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It is of soaring demand to develop statistical analysis tools that are robust
against contamination as well as preserving individual data owners’ privacy.
In spite of the fact that both topics host a rich body of literature, to the best
of our knowledge, we are the first to systematically study the connections
between the optimality under Huber’s contamination model and the local dif-
ferential privacy (LDP) constraints.

In this paper, we start with a general minimax lower bound result, which
disentangles the costs of being robust against Huber contamination and pre-
serving LDP. We further study four concrete examples: a two-point testing
problem, a potentially diverging mean estimation problem, a nonparametric
density estimation problem and a univariate median estimation problem. For
each problem, we demonstrate procedures that are optimal in the presence of
both contamination and LDP constraints, comment on the connections with
the state-of-the-art methods that are only studied under either contamination
or privacy constraints, and unveil the connections between robustness and
LDP via partially answering whether LDP procedures are robust and whether
robust procedures can be efficiently privatised. Overall, our work showcases a
promising prospect of joint study for robustness and local differential privacy.

1. Introduction. In modern data collection and analysis, the privacy of individuals is a
key concern. There has been a surge of interest in developing data analysis methodologies
that yield strong statistical performance without compromising individuals’ privacy, largely
driven by applications in modern technology, including in Google (e.g., Erlingsson, Pihur and
Korolova (2014)), Apple (e.g., Tang et al. (2017)) and Microsoft (e.g., Ding, Kulkarni and
Yekhanin (2017)), and by pressure from regulatory bodies (e.g., Forti (2021), Aridor, Che
and Salz (2021)). The prevailing framework for the development of private methodology is
that of differential privacy (Dwork et al. (2006)). Although this originates in cryptography,
there is a growing body of statistical literature that aims to explore the constraints of this
framework and provide procedures that make optimal use of available data (e.g., Wasserman
and Zhou (2010), Duchi, Jordan and Wainwright (2018), Rohde and Steinberger (2020), Cai,
Wang and Zhang (2021)). Work in this area is split between central models of privacy, where
there is a third party trusted to collect and analyse data before releasing privatised results, and
local models of privacy, where data are randomised before collection. We, in this paper, will
consider the local differential privacy constraint, to be formally defined in Section 1.2. While
classical methods for locally private analysis are restricted to the estimation of the parameter
of a binomial distribution (Warner (1965)), modern research has resulted in mechanisms for
many other statistical problems including various hypothesis testing problems (e.g., Kairouz,
Oh and Viswanath (2016), Joseph et al. (2019), Berrett and Butucea (2020), Acharya et al.
(2022), Lam-Weil, Laurent and Loubes (2022)), mean and median estimation (e.g., Duchi,
Jordan and Wainwright (2018)), nonparametric estimation problems (e.g., Rohde and Stein-
berger (2020), Butucea et al. (2020), Berrett, Györfi and Walk (2021)), and change point
analysis (e.g., Berrett and Yu (2021), Li, Berrett and Yu (2022)), to name but a few.
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In addition to preserving individuals’ privacy, being robust to outliers and adversarial con-
tamination is another desideratum for modern learning algorithms. The study of robust statis-
tical procedures has sparked great interest among statisticians and there have been a number
illuminating textbooks in this area (e.g., Huber and Ronchetti (2009), Hampel et al. (1986),
Huber (2004), Maronna et al. (2019)). The focus of classical robust statistics is on the analy-
sis of outliers’ influence on statistical procedures, quantified through specific notions such as
the breakdown point and influence function. Due to the demands of analysing more complex
data types, the focus has, more recently, shifted towards providing nonasymptotic guarantees
on convergence rates under various contamination models, including heavy-tailed models
(e.g., Catoni (2012), Lugosi and Mendelson (2019)), different types of model misspecifi-
cation (e.g., Huber (1968), Cherukuri and Hota (2021)), and strong contamination models
(e.g., Diakonikolas et al. (2017), Lugosi and Mendelson (2021), Pensia, Jog and Loh (2020)).
A number of computationally efficient algorithms that achieve (nearly) minimax rate-optimal
rates under either one or more aforementioned models have also been proposed for various
tasks; see Diakonikolas et al. (2019) for a recent survey.

The connections between differential privacy and robustness have been well studied in the
central model of differential privacy, where there is a trusted data curator. A natural starting
point for many differentially private estimators is a function of the data whose sensitivity
to changes in single observations can be controlled (e.g., Dwork et al. (2006), Dwork and
Lei (2009), Canonne et al. (2019), Cai, Wang and Zhang (2021)). This is also the case for
robust statistics, where estimators are often constructed in order to be minimally sensitive
to arbitrary changes in a small number of data points (e.g., Huber and Ronchetti (2009),
Huber (2004)). See Avella-Medina (2020) for further discussion of these connections. There
has been, recently, an increasing trend, mostly in the theoretical computer science literature,
of developing algorithms that are simultaneously robust and privacy-preserving under the
central model (e.g., Dimitrakakis et al. (2014), Ghazi et al. (2021), Esfandiari, Mirrokni and
Narayanan (2021), Kothari, Manurangsi and Velingker (2021), Liu et al. (2021)). There is,
however, little work on the connection between privacy and robustness in the local model
of differential privacy. A key distinction between our work and the aforementioned robust
procedures in the central model is that there it is possible to add noise after computing robust
estimators, while in local privacy the requirement to add noise to each observation separately
means that the approaches taken in the two models are fundamentally different. Note that
some very recent works (Cheu, Smith and Ullman (2021), Acharya, Sun and Zhang (2021),
Chhor and Sentenac (2022)) consider contamination after the privatisation step and the results
therein feature an interaction of privacy level α and contamination level ε. In our work, we
suppose that contamination happens before the data are sent for privatisation.

1.1. A summary of our contributions. This paper concerns the pursuit of answers to the
questions:

Q1. Can robust procedures be directly applied to privatised information and attain opti-
mal performance?

Q2. Can locally private procedures be automatically robust?

To address the aforementioned questions, in this work we will study a range of statistical
problems, including hypothesis testing (Section 2), mean estimation (Section 3), nonpara-
metric density estimation (Section 4) and median estimation (Section E of the Supplementary
Material, Li, Berrett and Yu (2023)) with data assumed to be generated according to Huber’s
ε-contamination model (e.g., Huber (1992)), specified in (1).

Starting with Q1, when studying Huber’s contamination model without privacy con-
straints, Chen, Gao and Ren (2016) developed a general theory and showed that a Scheffé
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tournament method provides optimal estimators for many problems. Such a method discre-
tises the parameter space and reduces estimation problems to hypothesis selection problems.
However, it was shown by Gopi et al. (2020) that hypothesis selection is exponentially more
difficult under local privacy constraints, prohibiting the use of this general learning scheme
in many specific statistical learning tasks; we discuss this aspect in Section 2.3. Despite this
negative answer to Q1 for this general robust procedure, for the specific problems considered
in the sequel, we will show that optimal LDP procedures can be regarded as robust procedures
applied to privatised data. See Sections 2.3, 3.3 and 4.3 for details.

As for Q2, it turns out that there are deep connections between locally private estima-
tion and estimation within Huber’s contamination model. Chen, Gao and Ren (2016) showed
that the total variation modulus of continuity, defined in (5), controls the difficulty of a wide
range of statistical problems studied under contamination. On the other hand, Rohde and
Steinberger (2020) showed that this modulus is also the key quantity in understanding the dif-
ficulty of a general class of estimation problems under local privacy. We further explore this
relationship and show that suitably chosen procedures for locally private estimation are also
optimal when Huber contamination is introduced. More importantly, we see that in specific
problems the costs of preserving privacy and contamination are separable, which matches the
intuition behind our lower bound result in Proposition 1.

In this paper, we will show that for a range of statistical problems, we are able to find
procedures that are simultaneously robust, privacy-preserving and statistically rate-optimal,
in terms of the contamination proportion ε, the privacy parameter α, the sample size n and
other model parameters that may occur in specific problems.

• Section 2 considers a simple hypothesis testing problem. When contamination is intro-
duced, this becomes a composite hypothesis testing problem where the separation be-
tween the hypotheses depends on the level of contamination. We study a combination
of the Scheffé test (Devroye and Lugosi (2001)) and the randomised response mechanism
(Warner (1965)), that results in a test that has previously been used for hypothesis testing
under local differential privacy constraint (e.g., Joseph et al. (2019), Gopi et al. (2020)).
We obtain matching upper and lower bounds to prove that this procedure is optimal under
Huber contamination and privacy constraints.

• In Section 3, we turn our attention to robust mean estimation, where the inlier distribution
has bounded kth central moment for some fixed k > 1, and unknown mean in [−D,D] for
some potentially diverging D ≥ 1. We propose a procedure that is minimax rate-optimal in
terms of the mean upper bound D, the sample size n, the privacy parameter α and the con-
tamination proportion ε. Previous work on mean estimation under local differential privacy
(Duchi, Jordan and Wainwright (2018)) assumes that D = 1 and deploys a Laplace privacy
mechanism, which we show is sub-optimal when D is large. Previous work has noted
the difficulty of private estimation with unbounded parameter spaces, both in the central
model of privacy (Brunel and Avella-Medina (2020), Karwa and Vadhan (2017), Kamath
et al. (2021)) and the local model (Duchi, Jordan and Wainwright (2013)). It is shown that
in the local model uniformly consistent estimation is impossible when D = ∞, even with-
out contamination (see Appendix G, Duchi, Jordan and Wainwright (2013)). We derive a
phase transition phenomenon, whereby there exists a boundary for D beyond which uni-
formly consistent estimation is impossible and below which a rate-optimal procedure is
available.

• We study nonparametric density estimation problems in Section 4. The procedures we
consider are the basis expansion procedures of Duchi, Jordan and Wainwright (2018) and
Butucea et al. (2020). We give new analyses to show that these privacy procedures remain
minimax rate-optimal when Huber contamination is introduced, for squared-L2 and L∞
losses, respectively.
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• In Section E of the Supplementary Material (Li, Berrett and Yu (2023)), we study a uni-
variate median estimation problem, deploying a locally private stochastic gradient descent
method (e.g., Duchi, Jordan and Wainwright (2018)). Different from the privacy mecha-
nism in the aforementioned three problems, the privacy mechanism here is sequentially
interactive. We show that this method is robust against Huber contamination and minimax
rate-optimal regarding all the model parameters.

1.2. General setup. We will now formally define the framework we study. Let P denote
a class of distributions on the sample space X and let G ⊃P denote the set of all distributions
on X . Two key ingredients in this paper are: (a) robustness against Huber contamination and
(b) privacy preservation in the sense of local differential privacy.

As for the contamination, to be specific, we consider problems where data are generated
not directly from P ∈ P , but from a contaminated distribution Pε ∈ Pε(P), where Pε(P) is
defined as

(1) Pε(P) = {
Pε = (1 − ε)P + εG : ε ∈ [0,1],P ∈ P,G ∈ G

}
.

The class of distributions Pε(P) is known as Huber’s ε-contamination model (Huber (2004))
in the robust statistics literature.

As for the privacy, formally speaking, a privacy mechanism is a conditional distribution
of the privatised data given the raw data, that is, Q(·|x1, . . . , xn), {xi}ni=1 ⊂ X , when the raw
data are {Xi}ni=1 = {xi}ni=1. A privacy mechanism is said to be α-differentially private, if for
all possible observations {xi}ni=1 and {x′

i}ni=1 that differ in at most one coordinate, it holds
that

(2) sup
A

Q(A|x1, . . . , xn)

Q(A|x′
1, . . . , x

′
n)

≤ eα,

where the supremum is taken over all measurable sets A.
For an α-differentially private mechanism to satisfy the local privacy constraint, the output

must be of the form {Zi}ni=1 ⊂ Z , where Z1 is generated solely based on X1, and for each i ∈
{2, . . . , n}, n ≥ 2, Zi is generated based on Xi and {Zj }i−1

j=1. The constraint (2) can therefore
be written in terms of the conditional distributions Qi that generate the Zi , that is,

(3) max
i=1,...,n

sup
A

sup
z1,...,zi−1∈Z

sup
x,x′∈X

Qi(A|x, z1, . . . , zi−1)

Qi(A|x′, z1, . . . , zi−1)
≤ eα,

with the convention that {z1, . . . , zj } = ∅ if j < 1. Any conditional distribution Q that sat-
isfies (3) is said to be an α-locally differentially private (LDP) privacy mechanism (see, e.g.,
Duchi, Jordan and Wainwright (2018)). We write Qα for the set of all α-LDP privacy mech-
anisms.

From (3), we can see that α > 0 represents the desired level of privacy which is an input to
the data analysis—the larger α is the less protected the raw data are. In this paper we focus
on the high-privacy regime 0 < α ≤ 1, where α may be a function of the sample size n. As
we will discuss in more detail later, we will require that nα2 diverges, as the sample size n

grows unbounded.
With both the ingredients in hand, we define the α-LDP minimax risk under contamination,

which is at the centre of the analysis in this paper; that is,

(4) Rn,α

(
θ(P),� ◦ ρ, ε

) = inf
Q∈Qα

inf
θ̂

sup
Pε∈Pε(P)

EPε,Q

[
� ◦ ρ

{
θ̂ , θ(P )

}]
,

where:

• the population quantity of interest is θ(P ) ∈ �, denoting a functional supported on P ;
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• the bivariate function ρ is a semi-metric on the space � and � : R+ → R+ is a nonde-
creasing function with �(0) = 0;

• the first infimum is taken over all possible α-LDP privacy mechanisms;
• the second infimum is over all measurable functions θ̂ = θ̂ (Z1, . . . ,Zn) of the privatised

data generated from privacy mechanism Q; and
• the loss function is of the form of an unconditional expectation, with respect to both the

data generating mechanism Pε and the privacy mechanism Q.

As detailed in (4), our goal is to understand the fundamental limits imposed by both the
contamination and the privacy constraint. In Proposition 1 below, we show that such statistical
tasks are at least as hard as either only preserving privacy at level α without contamination or
only being robust against contamination without preserving privacy.

PROPOSITION 1. For any ε ∈ [0,1), define the total variation modulus of continuity ω(ε)

to be

(5) ω(ε) = sup
{
ρ

(
θ(R0), θ(R1)

) : TV(R0,R1) ≤ ε/(1 − ε),R0,R1 ∈P
}
.

Define the α-LDP minimax risk without contamination to be

Rn,α

(
θ(P),� ◦ ρ

) = Rn,α

(
θ(P),� ◦ ρ,0

)
,

with Rn,α(·, ·, ·) defined in (4). For any given α ∈ (0,∞), it holds that

Rn,α

(
θ(P),� ◦ ρ, ε

) ≥ Rn,α

(
θ(P),� ◦ ρ

) ∨ �(ω(ε)/2)

2
.

We remark that Theorem 5.1 in Chen, Gao and Ren (2018) provides a general lower bound
under Huber’s contamination model for nonprivate data. Proposition 1 extends it to a general
case that accounts for the LDP constraint. A key aspect of the lower bound in Proposition 1
is that the cost of contamination is separated from that of privacy, that is, the level of privacy
required does not increase the error introduced by the contamination. In the sequel, we will
show that this lower bound is tight in the estimation problems we consider, while a similar
decoupling of a slightly different form can be found for our testing problem. In the examples
we consider, the difficulty of the combined problem of robustness and LDP is the difficulty
of the harder one of the two individual problems. We see this disentanglement as a sign of
the connection between privacy and robustness. In our examples, we have shown that it is
possible to find optimal procedures that are simultaneously privacy-preserving and robust.
We have not found any problems for which privacy precludes robustness, or vice versa.

The intuition behind Proposition 1 is that if the two distributions are indistinguishable on
the raw data space X , then no ‘transformation’ Q can distinguish them either. Note that a
similar quantity to ω(ε) was used by Donoho and Liu (1991), where the Hellinger distance
was considered instead of the total variance distance, to translate perturbations in the distri-
bution to perturbations in the quantities of interest measured by the chosen loss function—
ρ(θ(R0), θ(R1)).

1.3. Notation. For a, b ∈R, let a∧b = min(a, b), a∨b = max (a, b) and a+ = a∨0. For
nonnegative real sequences {an}n∈N+ and {bn}n∈N+ , an  bn denotes that limn→∞ an/bn =
0, an � bn denotes that bn  an, an � bn denotes the existence of a constant C > 0 such that
lim supn→∞ an/bn ≤ C, an � bn denotes that bn � an and an � bn denotes that an � bn � an.
Let N+ denote all positive integers and R+ denote the set of nonnegative real numbers. Let |S|
denote the cardinality of a set S. For two distributions Pa and Pb, their total variation distance
is TV(Pa,Pb) = supS |Pa(S) − Pb(S)|, where the supremum is taken over all measurable
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sets S, and their Kullback–Leibler divergence is KL(Pa,Pb) = ∫
log(dPa/dPb)dPa , if Pa is

absolutely continuous with respect to Pb. Let L2[0,1] = {f : [0,1] → R : ∫ 1
0 f 2(x)dx < ∞}.

A random variable X is sub-exponential with parameters (τ, b) if E[exp{λ(X − E(X))}] ≤
exp(λ2τ 2/2), for |λ| ≤ 1/b.

2. Robust testing under local differential privacy. Under the general setup described
in Section 1.2, assuming that X1, . . . ,Xn are i.i.d. random variables generated from P on X ,
we consider the robust testing problem

H0 : P ∈ Pε(P0) = {
Pε : (1 − ε)P0 + εG,G ∈ G

}
vs.

H1 : P ∈ Pε(P1) = {
Pε : (1 − ε)P1 + εG,G ∈ G

}
,

(6)

where P0 and P1 are two fixed distributions supported on X , and G is the set of all dis-
tributions supported on X . In this section, we are interested in testing (6) under an α-LDP
constraint. For a given α-LDP privacy mechanism Q, we let �Q = {φ :Zn → {0,1}} denote
the set of all {0,1}-valued measurable functions of privatised data {Zi}ni=1 generated via the
privacy mechanism Q. The α-LDP minimax testing risk can be written as

(7) Rn,α(ε) = inf
Q∈Qα

inf
φ∈�Q

{
sup

P∈Pε(P0)

EP,Q(φ) + sup
P ′∈Pε(P1)

EP ′,Q(1 − φ)
}
,

which corresponds to (4) with P = {P0,P1} and ρ being the 0-1 loss, that is, ρ = 0 if φ

returns the correct hypothesis and ρ = 1 otherwise. Note that, by considering the trivial test
that always rejects H0, we have Rn,α(ε) ≤ 1.

To fully understand the hardness of (6), we construct lower and upper bounds on Rn,α(ε)

in Sections 2.1 and 2.2, respectively. We conclude in Section 2.3 with a discussion of the
existing literature. In Section B.2 of the Supplementary Material (Li, Berrett and Yu (2023)),
we show that very similar results hold when the LDP constraint is relaxed to a general class
of local privacy constraints, namely Rényi local differential privacy.

2.1. Lower bound. In Proposition 2 below, we provide a lower bound on the α-LDP
minimax testing risk Rn,α(ε), in terms of the sample size n, the privacy constraint α, the total
variation distance TV(P0,P1) and the Huber contamination proportion ε. As we will discuss
later, this result also serves as an infeasibility result by providing necessary conditions on the
testing problem (6) for the existence of a test with vanishing risk.

PROPOSITION 2. For α ∈ (0,1) and the robust testing problem defined in (6), it holds
that the α-LDP minimax testing risk defined in (7) satisfies

Rn,α(ε) ≥ 1

2
exp

{−16α2n
{
TV(P0,P1) − ε/(1 − ε)

}2
+

}
.

Note that when TV(P0,P1) ≤ ε/(1 − ε), we can actually show that Rn,α(ε) = 1. Indeed,
this can be seen by a simpler argument since, in this case, according to Lemma A.1 in the
Supplementary Material, there exists some P̃ ∈ Pε(P0) ∩Pε(P1), and therefore

Rn,α(ε) ≥ inf
Q∈Qα

inf
φ∈�Q

{
E

P̃ ,Q
[φ] +E

P̃ ,Q
[1 − φ]} = 1.

In particular, whenever ε ≥ 1/2 we have that ε/(1 − ε) ≥ 1 ≥ TV(P0,P1), so that
Rn,α(ε) = 1.
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2.2. Upper bound. Given the lower bound in Proposition 2, we are to show that a folklore
test based on the randomised response mechanism and the Scheffé set (e.g., Devroye and
Lugosi (2001)) is minimax rate-optimal for the testing problem (6).

Step 1 (Privatisation). Given data {Xi}ni=1, let Yi = 1{Xi ∈ Ac}, where A is the Scheffé set
of P0 and P1 in (6), that is, A = arg maxS⊂X {P0(S)−P1(S)}. Let the privatised data {Zi}ni=1
be obtained via the randomised response mechanism. To be specific, let {Ui}ni=1 be indepen-
dent Unif[0,1] random variables that are independent of {Xi}ni=1. For i ∈ {1, . . . , n}, let

(8) Zi =
{
Yi, Ui ≤ eα/

(
1 + eα)

,

1 − Yi, otherwise.

Step 2 (Test construction). Let

N̂0 =
n∑

i=1

1{Zi = 0} and Ñ0 = eα + 1

eα − 1

(
N̂0 − n

eα + 1

)
.

The test is then defined as

(9) φ̃ = 1
{∣∣Ñ0/n − P0(A)

∣∣ >
∣∣Ñ0/n − P1(A)

∣∣} = 1
{
2Ñ0/n < P0(A) + P1(A)

}
.

Note that the privacy mechanism defined in Step 1 satisfies the α-LDP constraint in (3)
(e.g., Gopi et al. (2020)). In fact, the test φ̃ and a nonprivate counterpart have been used in the
nonrobust two-point testing problem with LDP constraints (e.g., Algorithm 6 in Joseph et al.
(2019); Algorithm 4 in Gopi et al. (2020)) and the robust two-point testing problem without
LDP constraints (e.g., Section 2 in Chen, Gao and Ren (2016)), respectively. It is known to be
rate-optimal in both cases. The following theorem, combining previous analyses, shows that
this test φ̃ is still optimal under both the privacy constraint and the presence of contamination.

THEOREM 3. For α ∈ (0,1) and the robust testing problem defined in (6), assuming that
TV(P0,P1) > 2ε with ε ∈ [0,1/2), the test defined in (8) and (9) satisfies that

sup
P∈Pε(P0)

EP,Q(φ̃) + sup
P ′∈Pε(P1)

EP ′,Q(1 − φ̃) ≤ 2 exp
[−Cα2n

{
TV(P0,P1) − 2ε

}2]
,

where C > 0 is some absolute constant.

We first note that in Theorem 3, we require ε < 1/2, which, as discussed above, is nec-
essary for the existence of nontrivial tests. Further, since ε/(1 − ε) ≥ ε, the lower bound in
Proposition 2 implies that

Rn,α(ε) ≥ 1

2
exp

{−16α2n
{
TV(P0,P1) − ε

}2
+

}
.(10)

Comparing the upper bound in Theorem 3 and the lower bound in (10), up to constants, we
see that the test φ̃ is optimal in terms of the privacy constraint α, the sample size n, the
separation TV(P0,P1) and the contamination proportion ε.

REMARK 1 (When ε is known). When ε is known, a modification of the test proce-
dure defined in (8) and (9) achieves slightly better performance and shows that uniformly
consistent testing is possible if and only if TV(P0,P1) > ε/(1 − ε). With the same privacy
mechanism as in (8), consider

φ′ = 1
{
2Ñ0/n < (1 − ε)

{
P0(A) + P1(A)

} + ε
}
,
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which uses the same test statistic but compares it to a different critical value. Similar calcu-
lations to those carried out for Theorem 3 show that

sup
P∈Pε(P0)

EP,Q

(
φ′) + sup

P ′∈Pε(P1)

EP ′,Q
(
1 − φ′) ≤ 2 exp

[−C′α2n
{
TV(P0,P1) − ε/(1 − ε)

}2
+

]
for some absolute constant C′ > 0, provided α ∈ (0,1]. We now see that, when TV(P0,P1) ≤
ε/(1 − ε) we have Rn,α(ε) = 1, and when TV(P0,P1) > ε/(1 − ε) + 1/

√
nα2 we have

− logRn,α(ε) � α2n
{
TV(P0,P1) − ε/(1 − ε)

}2
+.

Details of the calculations are given at the end of Section B.1 of the Supplementary Material
(Li, Berrett and Yu (2023)).

REMARK 2 (Relation to Proposition 1). The derived minimax error rate does not match
the form given in Proposition 1. This form appears to be most suitable for estimation prob-
lems, while for testing problems we must look at the error slightly differently. Indeed, it is
common in the theory of hypothesis testing to look at conditions under which errors are be-
low given thresholds, often through minimal separation rates, rather than errors themselves
(e.g., Ingster and Suslina (2003)). In problem (6) the total variation modulus of continuity is
given by

ω(ε) = sup
{
1{θ(R1) �=θ(R0)} : TV(R0,R1) ≤ ε/(1 − ε),R0,R1 ∈ {P0,P1}}

= 1{TV(P0,P1)≤ε/(1−ε)},

so we have ω(ε) ≤ 0.1 if and only if TV(P0,P1) > ε/(1 − ε). Moreover, we have seen that,
up to constants, Rn,α(0) ≤ 0.1 if and only if TV(P0,P1) is larger than (nα2)−1/2 and, on
the other hand, Rn,α(ε) ≤ 0.1 if and only if TV(P0,P1) ≥ ε/(1 − ε) + (nα2)−1/2. Thus
TV(P0,P1) is seen to characterise when each of ω(ε), Rn,α(0), Rn,α(ε) is below the (arbi-
trary) threshold 0.1. The level that TV(P0,P1) must exceed for Rn,α(ε) ≤ 0.1 is given by the
sum of the levels required for ω(ε) ≤ 0.1 and Rn,α(0) ≤ 0.1, and we see a decoupling of the
contamination and the privacy.

2.3. Discussion. Our results in Proposition 2 and Theorem 3 are similar in spirit to The-
orem 5.7 in Joseph et al. (2019), which states a minimax lower bound result in terms of the
sample complexity and presents an algorithm using a Laplace mechanism that achieves the
optimal sample complexity. In particular, they consider a compound hypothesis testing prob-
lem where H0 and H1 correspond to convex and compact sets of discrete distributions well
separated in terms of total variation distance, whereas our result concerns Huber’s contami-
nation model, with different proof schemes.

An extension of the two-point testing problem defined in (6) is hypothesis selection, which
is popular in both the computer science and statistics literatures (e.g., Gopi et al. (2020), Bun
et al. (2021), Yatracos (1985), Devroye and Lugosi (2001), Chen, Gao and Ren (2016)). To
be specific, for a fixed but unknown distribution P ∈ P , given a set of k0 ∈ N+ distributions
Q = {q1, . . . , qk0} ⊂ G, one seeks an element in Q that is closest to P in total variation
distance. In particular, taking Q to be a δ-covering set (δ > 0) of P , with k0 being the δ-
covering number, this hypothesis selection problem is similar to an estimation problem of
the distribution P . Based on this setup, Chen, Gao and Ren (2016) shows that applying a
tournament procedure with nonprivate counterparts of φ̃, to a δ-covering set of P , is minimax
rate-optimal for estimating P ∈ Pε(P) in terms of the total variation metric. Their procedure
returns an element P̂ ∈ Q, with high probability, satisfying that

TV(P̂ ,P )�
{√

log(k0)/n + δ2
} ∨ ε.
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With δ = inf{δ1 : n ≥ log(k0)/δ
2
1}, it holds that TV(P̂ ,P ) � δ ∨ ε, and n ≥ log(k0)/δ

2 is
called the sample complexity of the procedure. Based on the same setup, Bun et al. (2021)
considers the problem under the central privacy model but without contamination, that is,
P ∈ P , and they develop an algorithm that guarantees TV(P̂ ,P ) � δ with the sample com-
plexity n � log(k0)/δ

2 + log(k0)/(δα). Note that in both these two problems, k0 appears in
the sample complexity through its logarithm log(k0).

However, under local privacy constraints, Gopi et al. (2020) establishes a lower bound (cf.
Theorem 2 in Gopi et al. (2020)) on the sample complexity of n � k0/(δ

2α2), which shows
that the cost of this general estimation method induced by a δ-covering set is exponentially
higher in the local privacy setting compared to the central privacy and nonprivate settings.
The exponential gap in the sample complexity directly leads to a suboptimal rate for esti-
mation tasks. We now state an example illustrating the suboptimality of hypothesis selection
approaches to estimation problems, even in simple parametric problems, which motivates our
proposals of problem-specific estimation procedures studied in the rest of this paper.

EXAMPLE. Consider {Xi}ni=1 to be i.i.d. random variables from N (μ,1), μ ∈ [−D,D].
Estimating μ is a special case of the robust mean estimation problem in Section 3. For this
problem, we have k0 � D/δ. Theorem 2 in Gopi et al. (2020) implies that the sample com-
plexity of the associated hypothesis selection problem is

n� k0

δ2α2 � D/δ

δ2α2 = D

δ3α2 i.e., δ �
(

D

nα2

)1/3
.

Since TV(N (μ,1),N (μ′,1)) � |μ−μ′| (Devroye, Mehrabian and Reddad (2018)), this im-
plies that any estimator μ̂ obtained based on the δ-covering set would have convergence rate
measured by |μ̂−μ| bounded below by {D/(nα2)}1/3. However, since Gaussian distributions
have moments of all orders, we will see that we can attain a near-parametric upper bound by
applying Theorem 5 below with arbitrarily large k.

As for the questions Q1 and Q2 raised in Section 1.1, in this two-point testing problem,
we see that:

• there exists a procedure optimal against contamination (Section 2 in Chen, Gao and Ren
(2016)) that can be properly privatised to achieve optimal performance; and

• there exists an α-LDP procedure (Joseph et al. (2019)) that is automatically robust and
minimax rate-optimal.

3. Robust mean estimation under local differential privacy. Recalling the general
setup in Section 1.2, in this section we consider distributions supported on the real line,
that is, X = R, with finite kth (k > 1) central moments and possibly diverging expectation,
as the sample size grows unbounded. We are interested in estimating the expectation, that
is, θ(P ) = EX∼P (X). To be specific, we let

(11) P = Pk = {
P : μ = EX∼P (X) ∈ [−D,D], σ k = EX∼P

[|X − μ|k] ≤ 1
}
,

where k is considered fixed but arbitrary and D ≥ 1 may be a function of the sample size.
We again assume the data are generated from Huber’s contamination model (1). Let

{Xi}ni=1 be i.i.d. random variables with distribution Pk,ε ∈ Pε(Pk) and suppose that we are
interested in estimating the expectation of the inlier distribution μ.

The α-LDP minimax risk defined in (4) takes its specific form in the robust mean estima-
tion problem as follows:

(12) Rn,α(ε) = Rn,α

(
θ(Pk), (·)2, ε

) = inf
Q∈Qα

inf
μ̂

sup
Pk,ε∈Pε(Pk)

EPk,ε,Q

{
(μ̂ − μ)2}

,

where the metric of interest is the squared loss and the infimum over μ̂ is taken over all
measurable functions of the privatised {Xi}ni=1 via some privacy mechnism Q ∈ Qα .
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3.1. Lower bound. We first provide in Proposition 4 a lower bound that comprises
three terms. If log(D) ≥ 32nα2, then Rn,α(ε) � 1. This implies that uniformly consis-
tent estimation of μ is impossible. When log(D)  nα2, the lower bound simplifies to
(nα2)1/k−1 ∨ ε2−2/k , which is the minimax rate of the robust mean estimation problem with
fixed D. We show in Theorem 5 that a matching upper bound can be achieved by a novel
noninteractive procedure under minimal conditions.

PROPOSITION 4. Let {Xi}ni=1 be i.i.d. random variables from Pk,ε ∈ Pε(Pk), with Pk

defined in (11). For α ∈ (0,1] and n ≥ n0 with a large enough absolute constant n0 ∈ N+, it
holds that the α-LDP minimax estimation risk defined in (12) satisfies

Rn,α(ε) �
(
nα2)1/k−1 ∨ ε2−2/k ∨ D2

exp (64nα2)
.

Proposition 4 explains the hardness of this estimation problem by isolating the cost of
preserving privacy, contamination and estimating a possibly diverging mean respectively. If
any of these three becomes too hard, this estimation problem becomes infeasible. In terms of
the preservable level of privacy, we require α � n−1/2 for consistency. In terms of the Huber
contamination proportion, we require ε  1. In terms of D, the upper bound on the absolute
mean, we require D  exp(32nα2).

The dependence on D is a rather interesting finding. When k = 2 and D = ∞, it is shown
in Appendix G of Duchi, Jordan and Wainwright (2013) that Rn,α(0) = ∞. To interpolate
between the case of an unbounded parameter space and the case where the mean takes values
in a fixed compact set, we prove in Lemma C.1 (Li, Berrett and Yu (2023)) that, for any
D ∈ [0,∞) and n ∈ N+, the lower bound

Rn,α(0) ≥ D2

32 exp (64nα2)

holds.
Another interesting aspect roots in the derivation of the term (nα2)1/k−1, which unveils a

somewhat deeper connection between locally private estimation and estimation within Hu-
ber’s contamination model. To derive the term (nα2)1/k−1, we apply Corollary 3.1 in Rohde
and Steinberger (2020), which crucially depends on the following quantity:

ω′(η) = ω
(
η/(1 + η)

) = sup
{|μ0 − μ1| : TV(R0,R1) ≤ η,R0,R1 ∈ Pk

}
,

where μ0 and μ1 denote the means of R0 and R1, respectively. It is almost identical to
ω(·) defined in (5), up to a change of variable, and has been shown to play a central role
in establishing minimax rates for locally private estimation problems (Rohde and Steinberger
(2020)). Therefore, we see that the total variation modulus of continuity ω(·), a single unify-
ing quantity, can quantify the costs of both privacy and contamination in Huber’s contamina-
tion model.

3.2. Upper bound. We are now to show that the lower bound in Proposition 4 is indeed
tight by providing a novel noninteractive estimator that is adaptive to D. We split the data
into four folds, each of which is privatised separately. The procedure has two main steps:

• First, for a pre-specified M > 0, the first fold is used to construct a private histogram with
bin width M/3 and to identify bins containing a proportion of the contaminated distribution
exceeding a threshold. This allows us to find a larger bin of width M of the form [{S + (L−
1)/3}M, {S +1+ (L−1)/3}M], with S ∈N+ and L ∈ {0,1,2}, such that only a negligible
proportion of the distribution lies outside this interval. This interval can be thought of as a
crude, initial estimate of the location of the distribution.
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• Second, for each � ∈ {0,1,2} and each data point Xi in fold � + 2, we divide Xi − (� −
1)M/3 by M and use a Laplace mechanism to privatise the remainder. The privatised data
from fold L + 2 can then be used to pinpoint the mean within the interval [{S + (L −
1)/3}M, {S + 1 + (L − 1)/3}M], by adding the privatised remainders to its left-hand end
point.

Crucially, the value of L is not needed to privatise the data from the final folds and is only
used when constructing the final estimator. This can be done because there are only three
possible values of L and we may reserve a fold for each eventuality. One fold is incorporated
into the estimator and the other two are discarded.

We now formalise the procedure described above.

Step 1 (Privatisation). For some absolute constant c > 0, let T = exp(cnα2). Let M be a
tuning parameter such that T/M ∈N. Let

Aj = [
(j − 1)M/3, jM/3

)
, j ∈ J = {−3T/M,−3T/M + 1, . . . ,3T/M,3T/M + 1}.

Let the data be {Xi}4n
i=1. Generate independent standard Laplace variables (Wij )i∈[n],j∈J ,

(W
(�)
i )

(�+2)n
i=(�+1)n+1 for � = 0,1,2. For i ∈ [n] and j ∈ J set

(13) Zij = 1{Xi∈Aj } + 2

α
Wij .

For � = 0,1,2 and i = (� + 1)n + 1, . . . , (� + 2)n set

R
(�)
i = min

{
Xi − (j − 1)M/3 : j ∈ J , j ≡ � (mod 3),Xi ≥ (j − 1)M/3

}
and

(14) Z
(�)
i = [

R
(�)
i

]M
0 + M

α
W

(�)
i ,

where [·]M0 = min{max{·,0},M}.
Step 2 (Estimator construction). With

δ = T −2(
nα2)−1 and τ = ε + (1 − ε)(6/M)k + 4

√
2 log

(
12T/(Mδ)

)
/
(
nα2

)
,

define

Ĵ =
{
j ∈ J : 1

n

n∑
i=1

Zij ≥ τ

}
.

If Ĵ = ∅, then output μ̂ = 0. Otherwise, let

J = max Ĵ − 1 and L =

⎧⎪⎪⎨⎪⎪⎩
0 if J ≡ 0 (mod 3),

1 if J ≡ 1 (mod 3),

2 if J ≡ 2 (mod 3).

The estimator is defined as

(15) μ̂ = 1

n

(L+2)n∑
i=(L+1)n+1

Z
(L)
i + (J − 1)M/3.

The privatisation in (13) and (14) is noninteractive and satisfies α-LDP, as shown in
Lemma C.2 (Li, Berrett and Yu (2023)). The statistical guarantees of the estimator μ̂ defined
in (15) are collected in Theorem 5 below.
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THEOREM 5. Suppose we are given i.i.d. random variables {Xi}4n
i=1 with distribution

Pk,ε = (1 − ε)Pk + εG, where Pk ∈ Pk is defined in (11) and G is any arbitrary distribu-
tion supported on R. The estimator μ̂ defined in (15), with inputs satisfying that (i) T ≥ D,
(ii) (nα2)−1 log(12T 3nα2/M) ≤ min(α−2/2,1/512) and (iii) ε + (1 − ε)(6/M)k ≤ 1/12,
satisfies that

E
{
(μ̂ − μ)2}

� T 2 exp
(−nα2/512

) + M2

nα2 + ε2M2 + M−2(k−1).

In particular, choosing T = exp(nα2/3072) and M � ε−1/k ∧ (nα2)1/(2k), when α ≤ 1, D ≤
T and min{ε, (nα2)−1} ≤ c0 for some small constant c0 > 0, we have that

(16) E
{
(μ̂ − μ)2}

�
(
nα2)1/k−1 ∨ ε2−2/k.

Note that the constant hidden in (16) depends on k but is independent of all other pa-
rameters. With a properly chosen truncation tuning parameter M , Theorem 5 gives an up-
per bound on the mean squared error of μ̂ of the order (nα2)1/k−1 ∨ ε2−2/k . Comparing
with Proposition 4, we see that μ̂ is minimax rate-optimal in terms of the dependence on
n, α and ε. It is notable that it remains rate-optimal even for a diverging D, provided that
it is not growing faster than a certain exponential rate in nα2 (more precisely, we require
D ≤ T = exp(nα2/3072)). In fact, this requirement is essentially unavoidable, as Propo-
sition 4 shows that uniformly consistent estimation is impossible if logD � nα2. Lastly,
Theorem 5 shows that the error of our estimator has an upper bound independent of D, pro-
vided D ≤ T , which is in contrast to the performance of the private mean estimator based
on the standard Laplace mechanism studied in Duchi, Jordan and Wainwright (2018) (see
Proposition C.1 in the Supplementary Material (Li, Berrett and Yu (2023))).

3.3. Discussion. Our focus is on cases where both contamination and privacy constraints
are present. In this section, we discuss some related results in the literature that only consider
either contamination or the local privacy constraint.

Without the local privacy constraint, Prasad, Balakrishnan and Ravikumar (2019) proposes
a two-step robust mean estimator (cf. Algorithm 2 therein) that achieves optimality in the
model (11) with k ≥ 2 and D = ∞, under mild conditions (cf. Lemma 3 therein). With
probability at least 1 − δ, their estimator μ̂Pra satisfies that

(17) |μ̂Pra − μ|2 � log(1/δ)

n
∨ ε2−2/k,

for k ≥ 4, which is known to be information-theoretically optimal (e.g., Diakonikolas et al.
(2019)). For k ≥ 2, (17) also holds as long as log(1/δ) � log(n) (cf. Lemma 3 therein).
Recalling that our results are in the form of expectations, to compare (17) with Theorem 5, we
hence ignore the logarithmic term. Regarding the term involving ε, we see that in Theorem 5,
it is completely isolated from the privacy level α; and in both (17) and Theorem 5, it is of the
order ε2−2/k . As for preserving privacy at level α, we see the effects are two-fold (see also
Section 3.2.1 in Duchi, Jordan and Wainwright (2013)): (1) a reduction of the effective sample
size from n to nα2; and (2) instead of n−1 in the nonprivate case, we have in Theorem 5
the term n1/k−1, that is, the heavy-tailedness of P ∈ Pk has no effect on the nonprivate
convergence rate in (17), whereas a loss of 1/k in the exponent is incurred in the private
setting. Given that we have shown in Proposition 4 that the rate we achieved in Theorem 5
is optimal, the loss in the rate n1/k is unavoidable due to the privacy constraint—similar
phenomena have also been observed in the nonparametric estimation literature (e.g., Berrett
and Butucea (2019), Berrett and Yu (2021)) as well as in Section 4.
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In view of Q1 in Section 1.1, we claim that the estimator μ̂Pra is similar to our estimator μ̂

in a broad sense. As detailed in Algorithm 2 in Prasad, Balakrishnan and Ravikumar (2019),
μ̂Pra first constructs a shortest interval initial estimator using half of the data, which is similar
to finding J using the first n samples in our construction serving as a crude estimate. The
remaining data are then used to refine this crude estimate. One may, therefore, see that our
estimator μ̂ as a noninteractive and private version of an optimal robust mean estimator.

In view of Q2 in Section 1.1, Duchi, Jordan and Wainwright (2018) studies the problem
(11) with D = 1 and ε = 0 (cf. Section 3.2.1 therein). They estimate the mean by averaging
the privatised data obtained by adding Laplace noise to the truncated data. This mechanism
guarantees the α-LDP constraint, but in the case when D is large and ε > 0, it is sub-optimal.

To summarise, in this robust mean estimation problem, we see that:

• there exists a procedure (Prasad, Balakrishnan and Ravikumar (2019)) optimal against
contamination that can be properly privatised to achieve optimal performance; and

• a standard α-LDP procedure is not automatically robust and minimax rate-optimal when
the parameter space grows.

4. Robust density estimation under local differential privacy. Recalling the general
setup in Section 1.2, in this section, we consider distributions supported on X = [0,1], be-
longing to the Sobolev class P = Fβ , defined below.

DEFINITION 6 (Sobolev class). Let β > 1/2 and {γt }t∈T be an orthonormal basis of
L2[0,1] indexed by a countable family T . For a given coefficient sequence {at }t∈T associated
with {γt }t∈T , the Sobolev class Fβ is defined as

Fβ =
{
f : [0,1] →R+

∣∣∣ ∫
[0,1]

f (x)dx = 1,

∑
t∈T

|at |2β

∣∣∣∣∫[0,1]
f (x)γt (x)dx

∣∣∣∣2 = ∑
t∈T

|at |2β |ft |2 < ∞
}
.

(18)

We again assume that the data are generated from Huber’s contamination model (1). When
{Xi}ni=1 are i.i.d. random variables with distribution Pfε ∈ Pε(Fβ), we are interested in esti-
mating the density of the inlier distribution θ(P ) = f .

The α-LDP minimax risk defined in (4) takes its specific form in the robust density esti-
mation problem as follows:

(19) Rn,α(Fβ,� ◦ ρ, ε) = inf
Q∈Qα

inf
f̃

sup
Pfε∈Pε(Fβ)

EPfε ,Q

{
� ◦ ρ(f̃ , f )

}
,

where the infimum over f̃ is taken over all measurable functions of the privatised data gen-
erated from some Q ∈ Qα . We consider two loss functions, both of which are commonly
used in the nonparametric estimation literature (e.g., Tsybakov (2009)). To be specific, we
consider � ◦ ρ to be the squared-L2 loss and the L∞ loss, separately. For any two density
functions g1 and g2 supported on [0,1], let the squared-L2-loss and the L∞ loss be

(20) ‖g1 − g2‖2
2 =

∫
[0,1]

{
g1(x) − g2(x)

}2 dx and ‖g1 − g2‖∞ = sup
x∈[0,1]

∣∣g1(x) − g2(x)
∣∣,

respectively.
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4.1. Lower bound. In Proposition 7 below, we present lower bounds on Rn,α(Fβ,� ◦
ρ, ε), with � ◦ ρ taken to be the squared-L2 loss and L∞ loss. As we shall discuss later,
Proposition 7 is an application of the general lower bound result Proposition 1.

PROPOSITION 7. Let {Xi}ni=1 be i.i.d. random variables with distribution Pfε ∈ Pε(Fβ).
For α ∈ (0,1), it holds that the α-LDP minimax estimation risks defined in (19), equipped
with the squared-L2 loss and the L∞ loss defined in (20), are

(21) Rn,α

(
Fβ,‖ · ‖2

2, ε
)
�

(
nα2)− 2β

2β+2 ∨ ε
4β

2β+1

and

(22) Rn,α

(
Fβ,‖ · ‖∞, ε

)
�

{
log(nα2)

nα2

} 2β−1
4β+2 ∨ ε

2β−1
2β+1 ,

respectively.

In view of Proposition 1, the results in Proposition 7 are obtained by separately controlling
the lower bounds on (i) the nonrobust cases Rn,α(Fβ,‖ · ‖2

2,0) and Rn,α(Fβ,‖ · ‖∞,0) and
(ii) the total variation modulus of continuity ω(ε) under different loss functions.

As for (i), due to the Sobolev embedding theorem for Besov space (e.g., Proposition 4.3.20
in Giné and Nickl (2016)), it can be seen as a special case of Corollary 2.1 in Butucea et al.
(2020), which is a result on minimax rates for estimating density functions under Lr loss
(r ≥ 1) without contamination but with an α-LDP constraint.

As for (ii), we construct a lower bound on ω(ε) by considering a pair of density functions
with the help of wavelet basis functions. We note that Theorem 3 in Uppal, Singh and Poc-
zos (2020) studies a robust density estimation problem in the Besov space, under the Besov
integral probability metrics but without privacy constraints.

4.2. Upper bounds. In this subsection, we study the robustness properties of two α-LDP
estimators of the density function, subject to the squared-L2 loss and the L∞ loss, in The-
orems 8 and 9, respectively. Both estimators are of the form of linear projection estimators,
but constructed based on different choices of orthonormal basis functions and privacy mech-
anisms.

The squared-L2 loss. To obtain an upper bound on Rn,α(Fβ,‖ · ‖2
2, ε), we analyse a pro-

jection estimator based on the orthonormal basis for L2[0,1] consisting of trigonometric
functions, that is,

(23) ϕ1(x) = 1, ϕ2j (x) = √
2 cos(2πjx) and ϕ2j+1(x) = √

2 sin(2πjx), j ∈ N+.

With the choices aj = �(j + 1)/2� in (18), the Sobolev space in Definition 6 is characterised
by

(24)
∞∑

j=1

j2βθ2
j =

∞∑
j=1

j2β

{∫ 1

0
f (x)ϕj (x)dx

}2
≤ r2 < ∞,

where r > 0 is some universal constant controlling the radius of the ellipsoid. Condition (24)
can be translated into smoothness conditions on functions having βth order (weak) derivative
in L2[0,1] (e.g., Proposition 1.14 in Tsybakov (2009)). Our projection estimator f̂ is then
constructed as follows.
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Step 1 (Privatisation). Given data {Xi}ni=1, for any i ∈ {1, . . . , n}, let v = [ϕj (Xi)]kj=1 ∈
R

k , where k ∈ N+ is a pre-specified tuning parameter. Let the corresponding privatised data
be Zi ∈ R

k satisfying that EQ[Zi,j |Xi] = ϕj (Xi) and Zi,j = {−B,B} with B �
√

k/α,
where EQ denotes the expectation under the privacy mechanism. See Section D.2 of the
Supplementary Material (Li, Berrett and Yu (2023)) for full details of this privacy mecha-
nism.

Step 2 (Estimator construction). Let

(25) f̂ =
k∑

j=1

Zjϕj =
k∑

j=1

(
1

n

n∑
i=1

Zi,j

)
ϕj .

In the construction of f̂ , we choose the trigonometric functions, which satisfy the bounded
basis function condition with

(26) max
1≤j≤k

∥∥ϕj (·)
∥∥∞ ≤ √

2.

We remark that one may also choose other basis functions, provided that all basis functions
are upper bounded by an absolute constant in the function supremum norm. This is to guaran-
tee that the α-LDP constraint (3) holds (Duchi, Jordan and Wainwright (2018)). Another input
is the truncation number k, which essentially truncates this infinite-dimensional nonparamet-
ric problem to a k-dimensional estimation problem. In fact, the estimator (25) is considered
in Section 5.2.2 of Duchi, Jordan and Wainwright (2018), as a nonparametric density esti-
mator, which is shown to be minimax rate optimal in terms of the squared-L2 norm under
local differential privacy without contamination (cf. Corollary 7 in Duchi, Jordan and Wain-
wright (2018)). Together with Theorem 8 below, we will show that this private procedure is
automatically robust, in view of Q2 in Section 1.1.

We remark that f̂ defined in (25) is a privatised version of the widely used nonparametric
projection estimator (e.g. Chapter 1 in Tsybakov (2009)), defined as

f̃ =
k∑

j=1

{
1

n

n∑
i=1

ϕj (Xi)

}
ϕj ,

which attains the optimal minimax rate under squared-L2 loss when applied to nonparametric
regression problems for functions belonging to the Sobolev class (24) (cf. Theorem 1.9 in
Tsybakov (2009)).

THEOREM 8 (The squared-L2 norm case). Given i.i.d. random variables {Xi}ni=1 with
distribution Pfε = (1 − ε)Pf + εG, where Pf denotes the distribution with the density func-
tion f ∈ Fβ defined in (18), and G is an arbitrary distribution supported on [0,1], for
α ∈ (0,1) and ε ∈ [0,1], the estimator f̂ defined in (25) satisfies that

EPfε ,Q

[‖f̂ − f ‖2
2
]
� ε

4β
2β+1 ∨ (

nα2)− 2β
2β+2 ,

when the tuning parameter k is chosen to be k � ε
− 2

2β+1 ∧ (nα2)
1

2β+2 .

Comparing with the lower bound in (21), Theorem 8 shows that under a suitable choice
of k, the estimator f̂ is minimax rate-optimal in the presence of contamination and a local
privacy constraint.

The L∞ loss. Our next goal is to obtain an upper bound on Rn,α(Fβ,‖ · ‖∞, ε), and it
turns out that the trigonometric basis used in the previous analysis under the squared-L2
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risk is not flexible enough to obtain the optimal rate in the L∞ case. One reason is that it
prevents the use of Laplace mechanism to construct optimal private estimator. As discussed
in the last paragraph of Section 5.2.2 in Duchi, Jordan and Wainwright (2018), even under
L2 loss, adding Laplace noise to the trigonometric basis leads to sub-optimal rate of order
(nα2)−2β/(2β+3), which is worse than the corresponding optimal rate (nα2)−2β/(2β+2) as that
in Theorem 8. We instead exploit the wavelet basis, which allows the use of a simple Laplace
mechanism to efficiently privatise the empirical wavelet coefficients (Butucea et al. (2020)).

Given a father wavelet φ : [−A,A] → R and a mother wavelet ψ : [−A,A] → R, where
A > 0 is an absolute constant (see, e.g., Section 4.2.1 in Giné and Nickl (2016)), satisfying

(27)
∫
R

ψ(x)dx = 0, ‖ψ‖∞ < ∞ and ‖φ‖∞ < ∞,

a wavelet basis of L2(R) can be formed as{
φk = φ(· − k) : k ∈ Z

} ∪ {
ψjk = 2j/2ψ

(
2j (·) − k

) : j ∈N+ ∪ {0}, k ∈ Z
}
.

We denote φk as ψ−1k to simplify the notation. Given such a basis, we have that for any
f ∈ L2(R),

(28) f (x) = ∑
j≥−1

∑
k∈Z

βjkψjk(x) = ∑
j≥−1

∑
k∈Z

{∫
R

f
(
x′)ψjk

(
x′) dx′

}
ψjk(x).

Note that one can periodise a wavelet basis of L2(R) to construct a basis on L2[0,1] or apply
boundary correction to a wavelet basis for nonperiodic functions supported on [0,1] while
regular wavelet properties including (27) still hold. We refer to Giné and Nickl (2016) and
Daubechies (1992) for more detailed introduction on the theory of wavelets.

Since the density functions and wavelet basis are assumed to have compact supports on
[0,1] and [−A,A] respectively, the representation (28) implies that for each resolution level
j ≥ −1, |Nj | = |{k : βjk �= 0}| ≤ 2j + 2A + 1. With the choice aj = 2j in (18), the Sobolev
space in Definition 6 can be characterised by

(29)
∑

j≥−1

(
2j )2β‖βj ·‖2

2 = ∑
j≥−1

(
2j )2β

( ∑
k∈Nj

β2
jk

)
< ∞.

Condition (29) can also be translated to smoothness conditions on functions having βth order
(weak) derivative in L2(R) (e.g., Proposition 4.3.20 in Giné and Nickl (2016)).

The projection estimator is then constructed as follows.

Step 1 (Privatisation). Given data {Xi}ni=1, for any i ∈ {1, . . . , n}, j ∈ {−1,0, . . . , J } and
k ∈ Nj , where J ∈ N+ is a pre-specified tuning parameter, let Wijk’s be independent standard
Laplace random variables which are also independent of Xi’s, the noise parameter σJ be

(30) σJ = C2J/2/α with C = (
8�A� + 4

)‖ψ‖∞
√

2(
√

2 − 1)−1,

and the privatised empirical wavelet coefficients be

β̂jk = 1

n

n∑
i=1

Zijk = 1

n

n∑
i=1

{
ψjk(Xi) + σJ Wijk

}
.

Step 2 (Estimator construction). Let the final estimator be

(31) f̂Lap =
J∑

j=−1

∑
k∈Nj

β̂jkψjk.
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The tuning parameter J serves as a truncation parameter, reducing an infinite-dimensional
nonparametric estimation problem to a finite-dimensional problem with dimensionality being∑J

j=−1 |Nj |. The noise level σJ is chosen to guarantee the α-LDP constraint (Proposition 3.1
in Butucea et al. (2020)).

The estimator (31) is previously studied in Butucea et al. (2020), without the presence of
contamination but shown to be optimal in terms of estimating the L∞-loss, under α-LDP con-
straint. We remark that Butucea et al. (2020) studies a more general space and a wider range
of loss functions. Together with Theorem 9 below, we will show that this private procedure
is also automatically robust, again in view of Q2 in Section 1.1.

THEOREM 9 (The L∞ norm case). Given i.i.d. random variables {Xi}ni=1 with distri-
bution Pfε = (1 − ε)Pf + εG, where Pf denotes the distribution with the density function
f ∈Fβ , defined in (18), and G is an arbitrary distribution supported on [0,1], for α ∈ (0,1)

and ε ∈ [0,1], the estimator f̂Lap defined in (31) satisfies that

EPfε ,Q

(‖f̂Lap − f ‖∞
)
�

{
log(nα2)

nα2

} 2β−1
4β+2 ∨ ε

2β−1
2β+1 ,

with the tuning parameter J satisfying

2J �
{

log(nα2)

nα2

}− 1
2β+1 ∧ ε

− 2
2β+1 .

Comparing with the lower bound in (22), Theorem 9 shows that under a suitable choice of
J , the estimator f̂Lap is minimax rate optimal.

4.3. Discussion. In the classical nonparametric density estimation literature (e.g.,
Tsybakov (2009)), it is known that without the presence of contamination or privacy con-
straints,

(32) Rn,∞
(
Fβ,‖ · ‖2

2,0
) � n

− 2β
2β+1 and Rn,∞

(
Fβ,‖ · ‖∞,0

) �
{

log(n)

n

} 2β
4β+2

.

With the presence of both contamination and privacy constraints, in this section, we have
shown that

Rn,α

(
Fβ,‖ · ‖2

2, ε
) � (

nα2)− 2β
2β+2 ∨ ε

4β
2β+1 and

Rn,α

(
Fβ,‖ · ‖∞, ε

) �
{

log(nα2)

nα2

} 2β−1
4β+2 ∨ ε

2β−1
2β+1 .

Comparing our results with the classical rates in (32), we see that, similar to the mean esti-
mation problem studied in Section 3, the cost of preserving privacy is manifested through a
reduction of the effective sample size from n to nα2 and a loss in the exponent of conver-
gence rate, both of which have been observed in the literature (Duchi, Jordan and Wainwright
(2013), Duchi, Jordan and Wainwright (2018), Butucea et al. (2020)). It is, however, inter-
esting to observe that the privacy constraint and the contamination proportion are completely
isolated in terms of the fundamental limits. We also remark that the condition of bounded
basis function (26) and (27) are critical for both privatising the data and being robust to con-
tamination.

On the other hand—with contamination but without LDP constraints—Uppal, Singh and
Poczos (2020) studies a nonprivate version of f̂Lap, which is linear, and a nonlinear wavelet
thresholding estimator for robust estimation of densities belonging to Besov space. It is shown
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that the wavelet thresholding estimator is optimal for a wide range of loss functions, but for
the squared-L2 loss and L∞ loss we considered here, it suffices to use linear estimators to
achieve optimality in the presence of contamination. (Similar phenomena were observed in
Butucea et al. (2020) when estimating functions in Besov space under local privacy con-
straint.) Therefore, we may again view f̂Lap as a properly privatised version of a robust esti-
mator that yields optimal performance, the success of which depends crucially on the choice
of basis function.

In the robust statistics literature (e.g., Chen, Gao and Ren (2016), Chen, Gao and Ren
(2018), Uppal, Singh and Poczos (2020)), an interesting quantity to investigate is the max-
imum proportion of contamination such that Rn,α(θ(P),� ◦ ρ, ε) � Rn,α(θ(P),� ◦ ρ,0),
that is the maximum proportion of contamination that the estimators can tolerate to obtain the
optimal rate without contamination. In the private setting, denoting this quantity as ε∗

α , we
have that ε∗

α � (nα2)−(2β+1)/(4β+4) in the squared-L2 case and ε∗
α � {log(nα2)/(nα2)}1/2

in the L∞ case. Comparing to the nonprivate setting, denoting this quantity as ε∗, where
ε∗ � n−1/2 in the squared-L2 case and ε∗ � {log(nα2)/(nα2)}β/(2β−1) in the L∞ case, we
see that private algorithms can tolerate more contamination but at the price of converging at
a slower rate, due to the presence of privacy constraints.

We conjecture that the condition that the density function of interest is supported on a
compact set is critical in terms of achieving optimality under both contamination and LDP
constraints. As a consequence of this compact support condition, we require bounded basis
functions—see (26) and (27)—which facilitate our proofs. Another direct consequence of
this compact support condition is the following summary.

As for the questions Q1 and Q2 raised in Section 1.1, in this robust density estimation
problem, we see that:

• there exist procedures optimal against contamination (Uppal, Singh and Poczos (2020))
that can be properly privatised to achieve optimal performance; and

• there are existing α-LDP procedures (Duchi, Jordan and Wainwright (2018), Butucea et al.
(2020)) that are automatically robust and minimax rate optimal.

5. Conclusions. In this paper, we have studied various statistical problems under both
Huber’s ε-contamination model (1) and LDP constraints (3). For the four problems concerned
in this paper (with one left in the Supplementary Material (Li, Berrett and Yu (2023))), we
made an attempt to answer Q1 and Q2 in Section 1.1; that is, being aware of the deep connec-
tions between robustness and LDP, what we can say about the ability of robust procedures to
work with privatised data and about the robustness of private procedures. For all four prob-
lems that we studied, we find procedures that are simultaneously robust, privacy-preserving
and statistically rate-optimal. We commented on the connections between our methods to
those which are used only under contamination or only under LDP constraints, and provided
partial answers to these two questions in specific cases.

The optimality of our procedures mostly relies on the knowledge of ε—an upper bound on
the contamination level. This is an assumption commonly used in the literature (e.g., Huber
(1992), Lai, Rao and Vempala (2016), Prasad, Balakrishnan and Ravikumar (2019), Lugosi
and Mendelson (2021)) though impractical, since it is impossible to estimate ε when the
contamination distribution is not specified. An overly large input of ε leads to an inflated
error bound while a conservative input of ε leads to unjustified error controls. There has
been some recent work on general approaches to robust methodology when ε is unknown
(e.g., Jain, Orlitsky and Ravindrakumar (2022)). Applied to our procedures, the theoretical
guarantees are not immediate since our error bounds hold in expectation rather than almost
surely. Nevertheless, it would be interesting to adapt these ideas to further develop private,
robust and optimal procedures, which are also adaptive to ε.
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We also note that Proposition 1 is a markedly general result, the potential of which is
by no means fully exploited in this paper. Based on the current work, which demonstrates
the promise of jointly studying robustness and local differential privacy, we will continue
working on understanding the interplay between these two areas in other settings, in particular
for problems in high dimensions, with Proposition 1 providing a minimax lower bound to start
with.
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