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Privacy mechanisms

A privacy mechanism is a randomised algorithm taking an input dataset
X = (X1, . . . ,Xn) in X n and producing publishable data Z. Formally, it is
a collection of conditional distributions Q = {Q(·|x) : x ∈ X} such that

Z|{X = x} ∼ Q(·|x).

Source: medium.com

How much noise should we add? What type of noise?
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Differential privacy

Privacy mechanism Q is called α-differentially private (Dwork et al., 2006) if

sup
A

Q(A|x)

Q(A|x′)
≤ eα

for all x, x′ such that d(x, x′) :=
∑n

i=1 1xi 6=x ′i
≤ 1.

Differential privacy provides a rigorous framework to control the amount of
personal information in published data. Large scale applications include

Google Chrome (Erlingsson, Pihur and Korolova, 2014);

Apple in iOS and macOS (Tang et al., 2017);

Microsoft (Ding, Kulkarni and Yekhanin, 2017);

Uber (Near, 2018);

US Census (Dwork, 2019).

Can also be used to demonstrate GDPR compliance (Cohen and Nissim, 2020).

3 / 32



Differential privacy and robust statistics

Limiting the influence of any single input reminds us of robust statistics.

There has been interesting work on the link between these two areas (Dwork

and Lei, 2009; Avella-Medina, 2021; Hopkins et al., 2023; Asi et al., 2023), focussed mainly
on the central model of differential privacy.

X1 X2 · · · Xn

θ̂

Z
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Differential privacy and robust statistics

X1 X2 · · · Xn

θ̂

Z

If θ̂ = f (X1, . . . ,Xn) and

∆f := sup
x ,x ′:

∑n
i=1 1{xi 6=x′

i
}≤1

|f (x)− f (x ′)|

is the global sensitivity of f (Dwork and Lei, 2009), then we can take

Z = θ̂ +
∆f

α
W ,

where W ∼ Laplace(1).
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Local differential privacy

We consider the local model of differential privacy (e.g. Duchi et al., 2013),
where data are randomised one-by-one.

sup
A

sup
xi ,x
′
i ,z1,...,zi−1

Qi (A|xi , z1, . . . , zi−1)

Qi (A|x ′i , z1, . . . , zi−1)
≤ eα, for all i = 1, ..., n.

No trusted third party: analyse Z = (Z1, . . . ,Zn) with

X1 X2 · · · Xn

Z1 Z2 · · · Zn

θ̂n
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Local differential privacy and robustness

We study the relationship between privacy and robustness in this model.

For robustness we work with Huber contamination: instead of i.i.d. data
from distribution of interest P, the raw data is i.i.d. from

(1− ε)P + εG

for some ε ∈ (0, 1) and arbitrary distribution G .
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Combination of contamination and privacy

We suppose that the raw data is contaminated, before being privatised:

X1, . . . ,Xn ∼ (1− ε)P + εG then Z1, . . . ,Zn ∼ Q(·|X1, . . . ,Xn).

It is also possible to consider contamination after privatisation. The results
can be very different (Cheu et al., 2021; Acharya et al., 2021; Chhor and Sentenac, 2023).
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Minimax framework

Our object of interest is the minimax risk in this model:

Rn,α(θ(P),Φ ◦ ρ, ε) = inf
Q∈Qα

inf
θ̂

sup
Pε∈Pε(P)

EPε,Q

[
Φ ◦ ρ

(
θ̂, θ(P)

)]
,

where

θ(P) ∈ Θ is the quantity to be estimated;

ρ is a semi-metric on Θ and Φ is non-decreasing with Φ(0) = 0;

Pε = {(1− ε)P + εG : P ∈ P, G ∈ G} with P a class of distributions
of interest and G the class of all distributions on X ;

the inner infimum is taken over all measurable functions θ̂ of the
privatised data;

Qα is the set of all α-LDP mechanisms.
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TV modulus of continuity

In the classical i.i.d. model Donoho and Liu (1991) show that in a broad
class of estimation problems the minimax risk is controlled by

ωH(ε) := sup{ρ(θ(R0), θ(R1)) : H(R0,R1) ≤ ε/(1− ε),R1,R2 ∈ P}.

Chen et al. (2016) (cf. Devroye and Lugosi (2001)) develop general theory
in Huber’s model, and show that

ωTV(ε) := sup{ρ(θ(R0), θ(R1)) : TV(R0,R1) ≤ ε/(1− ε),R1,R2 ∈ P}

controls the statistical difficulty due to contamination in many problems.

Rohde and Steinberger (2020) show that ωTV controls the statistical
difficulty of a class of estimation problems under α-LDP.
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General lower bound

Following Chen et al. (2016), if TV(R0,R1) ≤ ε/(1− ε) then there exist
G0,G1 with

(1− ε)R0 + εG0 = (1− ε)R1 + εG1.

R0 R1

Choose R0 and R1 to attain the supremum in

ωTV(ε) = sup{ρ(θ(R0), θ(R1)) : TV(R0,R1) ≤ ε/(1− ε)}.

By Le Cam’s two point method we have Rn,α(θ(P),Φ ◦ ρ, ε) ≥ 1
2 Φ(ω(ε)

2 ).
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General lower bound

Combining with a trivial lower bound, we have the general simple result

Rn,α(θ(P),Φ ◦ ρ, ε) ≥ Rn,α(θ(P),Φ ◦ ρ, 0) ∨ 1

2
Φ
(ω(ε)

2

)
,

where the difficulty due to privacy and contamination separate.

We study a range of problems, showing that we can attain this lower
bound in each case.

(Simple hypothesis testing)

Mean estimation

Density estimation

Median estimation
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Simple hypothesis testing
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Simple hypothesis testing

We start by considering the robust simple hypothesis testing problem

H0 : P ∈ Pε(P0) = {Pε : (1− ε)P0 + εG , G ∈ G}
vs. H1 : P ∈ Pε(P1) = {Pε : (1− ε)P1 + εG , G ∈ G}

for fixed P0,P1.

In the non-private setting, we can use the Scheffé test (Devroye and Lugosi,

2001; Chen et al., 2016): Reject H0 if and only if

1

n

n∑
i=1

1{Xi∈Ac} >
1

2
{P0(A) + P1(A)},

where A satisfies P0(A)− P1(A) = supS{P0(S)− P1(S)} = TV(P0,P1).
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Simple hypothesis testing

We apply this method to the output of the randomised response
mechanism (Warner, 1965; Gopi et al., 2020)

Zi =

{
1{Xi∈Ac}, w.pr. eα/(1 + eα),

1− 1{Xi∈Ac}, otherwise.

Reject if and only if1 1
n

∑n
i=1 Zi >

1
2{P0(A) + P1(A)}.

Analysing the risk of this test shows that

Rn,α(ε) = inf
Q∈Qα

inf
φ∈ΦQ

{
sup

P∈Pε(P0)
EP,Q(φ) + sup

P′∈Pε(P1)
EP′,Q(1− φ)

}
≤ 2 exp[−Cnα2{TV(P0,P1)− 2ε}2

+].

1Using 1−ε
2
{P0(A) + P1(A)}+ ε

2
gives 2 exp[−Cnα2{TV(P0,P1)− ε/(1− ε)}2

+]
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Simple hypothesis testing

We have a lower bound to match the previous upper bound. For M0,M1

corrupted versions of P0,P1 we have

Rn,α(ε) ≥ inf
Q∈Qα

{1− TV(QMn
0 ,QM

n
1 )}

≥ inf
Q∈Qα

1

2
exp
(
−KL(QMn

0 ,QM
n
1 )
)

≥ 1

2
exp
(
−4n(eα − 1)2TV(M0,M1)2

)
.

Choosing the corruption distributions appropriately we have

TV(M0,M1) = (1− ε)TV(P0,P1)− ε.

For α ∈ (0, 1] this leads to

Rn,α(ε) ≥ 1

2
exp[−16nα2{TV(P0,P1)− ε/(1− ε)}2

+].
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Simple hypothesis testing

For combined error rate ≤ 0.1 we require:

Classical model: H(P0,P1) & 1/
√
n;

ε-Huber with n =∞: TV(P0,P1) > ε/(1− ε);

α-LDP: TV(P0,P1) & 1/
√
nα2;

α-LDP and ε-Huber: TV(P0,P1) & ε/(1− ε) + 1/
√
nα2

With a suitably-chosen privacy mechanism, an existing robust method is
minimax rate optimal.
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Scheffé tournament

Optimal robust procedures can often be found by a Scheffé tournament
approach (Devroye and Lugosi, 2001; Chen et al., 2016).

Find a δ-covering set {θ1, . . . , θm} of Θ and select the hypothesis θj that
is rejected least often in pairwise tests.

Credit: Han Bao

Gopi et al. (2020) shows that hypothesis selection is exponentially more
difficult under α-LDP. Non-private procedures require n & log(m)/δ2 while
α-LDP procedures require nα2 & m/δ2.
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Scheffé tournament

Consider P =
{
N (µ, 1) : µ ∈ [−1, 1]

}
. Here m � 1/δ so selection of the

closest hypothesis requires nα2 & δ−3. Thus, tournament estimators have
convergence rate bounded below by (nα2)−1/3.
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However, estimation at the rate (nα2)−1/2 is possible here.

We therefore take problem-specific approaches.
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Mean estimation
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Robust mean estimation

Here we take

P = Pk(D, k) :=
{
P : µ = EPX ∈ [−D,D], EP(|X − µ|k) ≤ 1

}
and aim to estimate µ under squared error loss.

Theorem

We find α-LDP µ̂ with

E{(µ̂− µ)2} . (nα2)−
k−1
k ∨ ε2−2/k

whenever max(ε, log(D)/(nα2)) ≤ c. This is minimax rate optimal.

In the classical model with D =∞ we have rate n−min(2 k−1
k
,1).

In the ε-Huber model with D =∞ and k ≥ 2 the rate is max(1/n, ε2−2/k).

Under α-LDP the rate is (nα2)−
k−1
k when log(D)/(nα2) ≤ c.
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Large parameter spaces

Previous literature has discussed issues with large D / unbounded
parameter spaces in local and central models (Duchi et al., 2013; Brunel and

Avella-Medina, 2020; Kamath et al., 2021) .

For constant D, one approach is to use the Laplace mechanism

Zi = [Xi ]M +
2M

α
Wi , i = 1, . . . , n,

where [·]M = max{−M,min(·,M)} and W1, . . . ,Wn ∼ Laplace(1), and
take µ̂ = Z̄n.

With M � D1/k min{ε−1/k , (nα2)1/(2k)} we have

E{(µ̂− µ)2} . D2/k max{(nα2)−
k−1
k , ε2−2/k},

which is optimal when D is constant.
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Optimal mean estimator

Find J = argmaxj=1,...,2D/r

∑n/2
i=1

(
1{−D+(j−1)r≤Xi<−D+jr} + 2

αWij

)
with

r = 1001/k .
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Set2 µ̂ = J + 2
n

∑n
i=n/2+1

(
[Xi − J]M + 2M

α Wi

)
with M � ε−

1
k ∧ (nα2)

1
2k .

2There exists a non-interactive procedure with the same guarantees.
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Density estimation
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Density estimation

We consider density estimation problems with L2 and L∞ loss. We show
that basis expansion estimators due to Duchi et al. (2018); Butucea et al.
(2020) are robust against contamination.

We consider Sobolev-smooth densities

Fβ =

{
f : [0, 1]→ R+ :

∫ 1

0
f = 1,

∞∑
j=1

j2β

(∫ 1

0
f γj

)2

≤ r2

}

where (γj) is an orthonormal basis for L2[0, 1].
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Density estimation

For L∞ loss we consider the wavelet estimator of Butucea et al. (2020)

f̂ =
J∑

j=−1

∑
k

β̂jkψjk , β̂jk =
1

n

n∑
i=1

{
ψjk(Xi ) +

C2J/2

α
Wijk

}

with J chosen such that 2J � { log(nα2)
nα2 }−

1
2β+1 ∧ ε−

2
2β+1 .

Lower bounds follow from a combination of Butucea et al. (2020) and
Uppal et al. (2020).

We find that

Rn,α(Fβ, ‖ · ‖∞, ε) �
{ log(nα2)

nα2

} 2β−1
4β+2 ∨ ε

2β−1
2β+1 .

26 / 32



Density estimation

By considering the density estimator of Duchi et al. (2018) based on the
trigonometric basis, we show that

Rn,α(Fβ, ‖ · ‖2
2, ε) � (nα2)−

2β
2β+2 ∨ ε

4β
2β+1 .

Lower bounds follow from a combination of Duchi et al. (2018) and Uppal
et al. (2020).

Here, existing LDP methods are automatically robust.
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Median estimation
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Median estimation

Want to estimate θ(P) = med(P) over

Pr = {P : |θ(P)| ≤ r ,EP |X | <∞}

with loss function the excess risk R(θ̂)− R(θ(P)) where R(·) = EP |X − ·|.

We show the optimal rate to be

Rn,α(ε) � r√
nα2
∨ (rε).

29 / 32



Stochastic gradient descent

This rate is attained by a general private stochastic gradient descent
algorithm (Duchi et al., 2018).

Let W1, . . . ,Wn be i.i.d. in {−1, 1} with P(W1 = 1) = eα/(1 + eα) and
let η1 ≥ . . . ≥ ηn be step sizes. Iterate according to

θi+1 = max{−r ,min(θi − ηiZi , r)}

where

Zi =
eα + 1

eα − 1
Wi sign(θi − Xi ).

The final estimator is

θ̂ =

∑n
i=1 ηiθi∑n
i=1 ηi

.
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Conclusion

We identify procedures that are simultaneously privacy-preserving and
robust for a range of statistical problems.

The difficulty of private hypothesis selection makes a general theory more
difficult...

But many existing private procedures are automatically robust, and ideas
from robust statistics are useful for constructing α-LDP methods.
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Thank you!

Li, M., B. and Yu, Y. (2023) On robustness and local differential privacy,
Ann. Statist., 51(2), 717–737.
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