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Background

Measuring dependence and testing independence are fundamental problems
in statistics, and are essential for model building, certain goodness-of-fit
tests, feature selection, independent component analysis and more.

Classical measures include:

Pearson’s correlation (e.g. Pearson, 1920);

Kendall’s tau (Kendall, 1938);

Hoeffding’s D (Hoeffding, 1948).

These are limited to linear or monotonic dependence, or bivariate settings.



Measures of dependence

Modern datasets often exhibit complex dependence which is not well
captured by these classical measures.

As a result, many new measures and tests have been proposed and studied
recently:

HSIC (Gretton et al., 2005; Sejdinovic et al., 2013; Pfister et al., 2018; Meynaoui et al.,

2019);

Distance covariance (Székely, Rizzo and Bakirov, 2007; Székely and Rizzo, 2013);

Nearest neighbour methods (B. and Samworth, 2019);

Multivariate rank-based tests (Weihs et al., 2017; Shi, Drton and Han, 2019; Deb

and Sen, 2019);

Empirical copula processes (Kojadinovic and Holmes, 2009);

Sample space partitioning (Gretton and Györfi, 2010; Heller et al., 2016).



Conditional dependence

Moreover, in practice, it is often conditional independence that is of
primary interest.

In GLMs for a response Y regressed on a high-dimensional feature vector
(X ,Z ) = (X ,Z 1, . . . ,Zp), the regression coefficient of X is zero if and
only if H0 : X ⊥⊥ Y |Z .

Conditional independence tests are well-developed within standard
parametric models.



Measures of conditional dependence

In the regression setting, we can model the relationships of X and Y on Z
and look for correlation between the residuals (Belloni et al., 2014; Shah and

Peters, 2019).

Many tests of independence also have counterparts in the conditional
independence setting (partial distance covariance, conditional kernel methods, partial

copulas etc.)).

Critical values are typically found through asymptotic theory, which may
not be reliable under model misspecification or with smaller sample sizes.



Problem statement

Suppose we observe an i.i.d. sample (X1,Y1,Z1), . . . , (Xn,Yn,Zn) taking
values in a space X × Y × Z. Our aim is to test the null hypothesis

H0 : X ⊥⊥ Y |Z

of conditional independence, or, equivalently, that fXYZ = fX |Z fY |Z fZ .

Our results are very general, but we may think of X = Y = R and Z = Rp

for some (large) p.

Given the data X,Y,Z and any test statistic T : X n × Yn ×Zn → R, our
procedure will output a p-value.



Permutation tests

In the simpler problem of testing H0 : X ⊥⊥ Y , a practical and popular
approach is to carry out a permutation test (e.g. Pitman, 1938; Fisher, 1935).

For any test statistic T : X n × Yn → R and i.i.d. uniformly random

permutations π1, . . . , πM ∈ Sn we can set X
(m)
i = Xπm(i) and calculate the

p-value

P =
1 +

∑M
m=1 1{T (X(m),Y) ≥ T (X,Y)}

1 + M
.



Size of permutation tests

Under H0, the datasets (X,Y), (X(1),Y), . . . , (X(B),Y) are exchangeable.

Hence, the statistics T (X,Y),T (X(1),Y), . . . ,T (X(B),Y) are
exchangeable.

The rank of T (X,Y) among T (X,Y),T (X(1),Y), . . . ,T (X(B),Y) is
uniformly distributed on {1, . . . ,B + 1}, and so P(P ≤ α) ≤ α for all
α ∈ [0, 1].



Permutation tests

Without confounding variables, we can easily construct permutation
independence tests with exact, assumption-free Type I error control.

In fact, such tests with well-chosen test statistics can also have small Type
II error. They can sometimes be proved to have desirable asymptotic
properties (e.g. Lehmann and Romano, 2005), and can even be minimax rate
optimal (B., Kontoyiannis and Samworth, 2020).

H0

ρ

H1

H0 : X ⊥⊥ Y

H1 : D(P,PXPY ) ≥ ρ, s-smooth

ρ∗ � n−
2s

4s+d



Hardness of conditional independence testing

This is not the case for conditional independence testing, where it is
generally not even possible to control Type I error uniformly.

Let P be the class of continuous null (X ⊥⊥ Y |Z ) distributions of
(X ,Y ,Z ) and let Q be the class of continuous alternatives (X 6⊥⊥ Y |Z ).

Theorem (Shah and Peters, 2019)

For n ∈ N and α ∈ (0, 1), let ψn be a test with supP∈P PP(ψn = 1) ≤ α.
Then

sup
Q∈Q

PQ(ψn = 1) ≤ α.

If Z is discrete with a small alphabet size we may be able to split the
sample and test, but we can see that this is not possible for general
distributions of Z .



Model-X framework

According to Shah and Peters (2019), it is necessary to make assumptions
when testing conditional independence.

We adopt the ‘Model-X’ framework of Candès et al. (2018) and assume
that we have an approximation Q(·|z) to the conditional distribution of
X |Z = z . With this extra information, we will see that we can restore
finite-sample Type I error control.

Formally, we will only require our tests to control the Type I error for
distributions of (X ,Y ,Z ) that are (approximately) consistent with
X |Z = z ∼ Q(·|z).



Model-X framework

The Model-X assumption has become popular in settings where we want
to avoid making any assumptions on Y (Candès et al., 2018; Barber and Candès,

2018; Tansey et al., 2018; Romano et al., 2019) .

In some cases (X ,Z ) data is abundant while labeled data (X ,Y ,Z ) is
relatively scarce.
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The conditional permutation test

Let X() = (X(1), . . . ,X(n)) denote the order statistics of X, and let Π ∈ Sn
denote the ranks so that Π satisfies Xi = X(Π(i)). Then, under H0,

P(Π = π|X(),Y,Z) =

∏n
i=1 q(X(π(i))|Zi )∑

π′
∏n

i=1 q(X(π′(i))|Zi )
=

qn(X(π)|Z)∑
π′ q

n(X(π′)|Z)

if Q(·|z) is the true conditional distribution of X |Z = z with density q(·|z).

We can draw π1, . . . , πM independently from the same distribution

P(πm = π|X(),Y,Z) =
qn(X(π)|Z)∑
π′ q

n(X(π′)|Z)

and set X
(m)
i = X(πm(i)). Conditional on X(),Y,Z and under H0, then

Π, π1, . . . , πM are i.i.d.
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(m)
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The conditional permutation test

Consider X |Z ∼ N (βZ , σ2) and Y |X ,Z ∼ N (βZ + γX , σ2). We can
compare the residuals ε̂X and ε̂Y after regressing X and Y on Z .
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The conditional permutation test

Under H0 and assuming that Q(·|z) is the true conditional distribution of
X |Z = z , the sequence

(X,Y,Z), (X(1),Y,Z), . . . , (X(M),Y,Z)

is exchangeable.

Under these conditions, given any test statistic T : X n × Yn ×Zn → R,
the random variable

P =
1 +

∑M
m=1 1{T (X(m),Y,Z) ≥ T (X,Y,Z)}

1 + M

satisfies P(P ≤ α) ≤ α.
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The conditional randomization test

The conditional randomization test (CRT) of Candès et al. (2018) is an
approach in the same framework that draws

X(1), . . . ,X(M)|X,Y,Z i .i .d .∼ Qn(·|Z) = Q(·|Z1)× . . .× Q(·|Zn)

without the restriction that the X(m) be reorderings of X.

Our conditional permutation test (CPT) is similar to this, and can be
thought of as drawing X(m) from the distribution Qn(·|Z) conditional on
the event that X(m) has the same order statistics as X.



Comparing the CPT and CRT

The CPT forces the X(m) to be more similar to X than with the CRT.

If we only know q(·|z) up to base measure and normalizing constant, i.e.
the truth is q∗(x |z) = q(x |z)h(x)c(z), then the permutation distribution∏n

i=1 q(X(π(i))|Zi )∑
π′
∏n

i=1 q(X(π′(i))|Zi )
=

∏n
i=1 q

∗(X(π(i))|Zi )∑
π′
∏n

i=1 q
∗(X(π′(i))|Zi )

is correct. In this way the CPT is more robust than the CRT.

If, e.g., we have a semiparametric model in which

q∗(x |z) = exp(x · zT θ − f (x)− g(z))

then it will be significantly easier to estimate q∗ up to base measure than
to estimate all of q∗.



Robustness

The input conditional distribution Q(·|z) will generally be different to the
true conditional distribution Q∗(·|z), and the Type I error control may not
hold exactly.

Theorem

Under H0, for any test statistic T and significance level α ∈ [0, 1] we have
for both the CPT and CRT that

P(P ≤ α|Y,Z) ≤ α + dTV

(
Qn
∗ (·|Z),Qn(·|Z)

)
,

where dTV(Q1,Q2) := supA |Q1(A)−Q2(A)| is the total variation distance.

If we can choose Q with dTV

(
Qn
∗ (·|Z),Qn(·|Z)

)
= o(1) then we have an

approximately valid test.



Sketch of proof for CRT

Let X,Y,Z be our data, and let X̌,X(1), . . . ,X(M) be drawn i.i.d. from
Qn(·|Z) independent of X,Y. Let Aα ⊆ (X n)M+1 be given by

Aα =

{
(x, x(1), . . . , x(M)) :

1 +
∑M

m=1 1{T (x(m),Y,Z) ≥ T (x,Y,Z)}
1 + M

≤ α
}
,

the rejection region of the CRT.

We then have

P(P ≤ α|Y,Z) = P
(
(X,X(1), . . . ,X(M)) ∈ Aα|Y,Z

)
≤ P

(
(X̌,X(1), . . . ,X(M)) ∈ Aα|Y,Z

)
+ dTV

((
(X,X(1), . . . ,X(M))|Y,Z

)
,
(
(X̌,X(1), . . . ,X(M))|Y,Z

))
= P

(
(X̌,X(1), . . . ,X(M)) ∈ Aα|Y,Z

)
+ dTV

(
Qn
∗ (·|Z),Qn(·|Z)

)
≤ α + dTV

(
Qn
∗ (·|Z),Qn(·|Z)

)
,

where the final bound follows by exchangeability.
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Robustness

If Q∗ belongs to a k parameter family and we have access to an unlabeled
sample of size N then we will typically have a valid test when N � nk .
Suppose

X |Z = z ∼ N (zTβ∗, σ
2
∗)

for some unknown β∗ and σ∗ that we estimate by the maximum likelihood
estimators β̂ and σ̂2. Then

d2
TV

(
Qn
∗ (·|Z),Qn(·|Z)

)
≤ 1

2

n∑
i=1

dKL

(
Q∗(·|Zi ),Q(·|Zi )

)
=

n

2

(
log

σ̂2

σ2
∗

+
σ2
∗
σ̂2
− 1

)
+

n∑
i=1

(ZT
i β̂ − ZT

i β∗)
2

2σ̂2
= Op

(
n(1 + E‖Z‖2)

N

)
.



Robustness

As a second example, suppose X = {0, 1} and we estimate the regression
function p∗(z) := P(X = 1|Z = z). Then, under appropriate smoothness
conditions we will be able to achieve

d2
TV

(
Qn
∗ (·|Z),Qn(·|Z)

)
≤ 1

2

n∑
i=1

dKL

(
Q∗(·|Zi ),Q(·|Zi )

)
�

n∑
i=1

{
p̂(Zi )− p∗(Zi )

}2
. nN−ak ,

where N−ak is the (minimax) rate of convergence depending on the
ambient dimension k and the smoothness. When N is sufficiently large,
our test will be approximately valid.



Lower bound

For the CRT, our upper bound is tight when M is large.

Theorem

Under H0, there exists a test statistic T such that, for the CRT,

sup
α∈[0,1]

{
P(P ≤ α|Y,Z)−α

}
≥ dTV

(
Qn
∗ (·|Z),Qn(·|Z)

)
− 1 + o(1)

2

√
log(M)

M

as M →∞.

Combining this result with the previous upper bound, for the worst case
test statistic the CPT is at least as robust as the CRT. We see in practice
that the CPT is often much more robust.



Gaussian simulations under the null

With n = 50, p = 20 and a, b ∼ Np(0, Ip) suppose that

Z ∼ Np(0, Ip), X |Z ∼ N (µ(bTZ ), 1) Y |X ,Z ∼ N (p−1aTZ , 1)

for some function µ, so that H0 holds. However, suppose we take
Q(·|z) = N (bT z , 1), so that our model is misspecified unless µ(η) = η,
and we use the test statistic T (X,Y,Z) = |Corr(X,Y)|.

µ(η) = η + θη2 µ(η) = η − θη3 µ(η) = tanh(θη)/θ



Estimation error simulations under the null

Suppose now that

Z ∼ Np(0, Ip), X |Z ∼ N (bTZ , 1) Y |X ,Z ∼ N (p−1aTZ , 1)

but that b is unknown. We will use the value b̂, where this estimator is
either calculated using an unlabled sample (X unlab

i ,Y unlab
i ), i = 1, . . . ,N

or by reusing the test data.

(a) Trained on unlabeled data (b) Trained by reusing data

Simulation results for robustness to models trained on unlabeled data or by reusing the data.
Details as for Figure ??.



Power simulations

Now suppose that

Z ∼ Np(0, Ip), X |Z ∼ N (bTZ , 1) Y |X ,Z ∼ N (aTZ + cX , 1)

so that H0 does not hold, and c controls the strength of the dependence.

The cost of the extra robustness is a slight decrease in power.
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Capital bikeshare data set

We implement the CPT and CRT on the Capital bikeshare data set. This
contains each ride ever taken, recording the start time and location, end
time and location, and a user type that can be ‘Member’ or ‘Casual’.



Capital bikeshare data set

We use the following data

Test data: all rides taken on weekdays in Oct 2011. Sample size
n=7,346 rides (after screening).

Training data: all rides taken on weekdays in Sep and Nov 2011.
Sample size N=149,912 rides.

We take X to be the duration of the ride, Y the user type, date or day of
the week, and Z the start and end locations and time of day. For our
conditional distribution we use

Q(·|z) = N (µ̂(z), σ̂2(z)),

where µ̂(z) and σ̂2(z) are calculated using the training data for each
combination of start and end location with a kernel weighting times of day.
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Capital bikeshare data set

Writing Ri = Xi − µ̂(Zi ) we take T to be the correlation between R and Y
when Y is the user type. When Y is the day of the week we take T to be

max
y∈{Mon,...,Fri}

∣∣∣Corr(R, (1{Y1 = y}, . . . ,1{Yn = y}
)∣∣∣.

With M = 100 we obtain the following average p-values over ten trials of
the experiment:

Variable Y CPT CRT

User type 0.0010 (0.0000) 0.0010 (0.0000)

Date 0.1146 (0.0032) 0.1293 (0.0032)

Day of week 0.1980 (0.0037) 0.2063 (0.0032)

The CPT and CRT perform similarly here.
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Computation

To implement the CPT we must be able to sample from the permutation
distribution

P(πm = π|X(),Y,Z) =
qn(X(π)|Z)∑
π′ q

n(X(π′)|Z)

This distribution is highly non-uniform, and non-trivial to sample from.



Computation

If we ran a Metropolis–Hastings algorithm then the acceptance odds ratio∏n
i=1 q(X(π′(i))|Zi )∏n
i=1 q(X(π(i))|Zi )

=
qn(X(π′)|Z)

qn(X(π)|Z)

would be extremely small for nearly all proposals π′. Uniform proposals
would result in extremely slow mixing.

A more efficient algorithm is given by the Metropolis–Hastings algorithm
with proposals of the form π′ = π ◦ σij , where π is the current state and
σij is the transposition of i and j . The acceptance odds ratio is then

q(X(π(j))|Zi ) · q(X(π(i))|Zj)

q(X(π(i))|Zi ) · q(X(π(j))|Zj)
.

This can be parallelized by proposing bn/2c transpositions at the same
time.



Parallelized algorithm

Algorithm 1 Parallelized pairwise sampler for the CPT

Input: Initial permutation Π[0], integer S ≥ 1.

for s = 1, 2, . . . ,S do
Sample uniformly without replacement from {1, . . . , n} to obtain dis-
joint pairs

(is,1, js,1), . . . , (is,bn/2c, js,bn/2c).

Draw independent Bernoulli variables Bs,1, . . . ,Bs,bn/2c with odds ratios

P(Bs,k = 1)

P(Bs,k = 0)
=

q(X(Π[s−1](js,k ))|Zis,k ) · q(X(Π[s−1](is,k ))|Zjs,k )

q(X(Π[s−1](is,k ))|Zis,k ) · q(X(Π[s−1](js,k ))|Zjs,k )
.

Define Π[s] by swapping Π[s−1](is,k) and Π[s−1](js,k) for each k with
Bs,k = 1.

end for



Mixing time

The algorithm mixes quickly, and S = 50 seems to be a sufficient number
of iterations.

(a) Log-likelihood of X[s] (b) Corr(X,X[s])



Star-shaped sampler

Because of the weak dependence between Π[0],Π[S],Π[2S], . . . ,Π[MS], the
data X,X[S], . . . ,X[MS] are not exactly exchangeable under H0. This can
be corrected with a slightly different sampler.

Π(0) Π∗

Π(1)

Π(2)

Π(3)

Π(4)

Π(5)

This produces exchangeable data with any value of S , under H0 and
assuming Q(·|z) is correct.



Conclusion

We introduce the conditional permutation test, which modifies the
standard permutation test so that it may be used in a conditional
setting if the relationship between X and Z is (approximately) known.

We compare the CPT and the CRT in terms of their robustness to
model misspecification, and find theoretical and numerical evidence to
suggest that the CPT is more robust.

We provide efficient implementations of the CPT.



Thank you!

B., Wang, Y., Barber, R. F. and Samworth, R. J. (2019) The conditional
permutation test for independence while controlling for confounders. J.
Roy. Statist. Soc., Ser B, 82(1), 175–197.
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