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Comments and corrections to t.berrett@statslab.cam.ac.uk.

1. Let g* : RY — {0,1} be the Bayes decision rule. Prove that
(i) P(g"(X) #Y) = E {min(n(X), 1 —n(X))}.
Now, for any decision g : R — {0, 1}, show that
(ii) P(g"(X) #Y) < P(g(X) #Y).

Also, for 77(x) which approximates 7 using the plug-in rule g(z) = 1 if f(x) > 1/2, prove that

(iii) P(g(X) #Y) —P(g"(X) #Y) < 2E[n(X) — 7(X)].

2.* Denote the probability measure for X by Px. Let S, be the closed ball centred at x of
radius € > 0. The collection of all x with Px (Sz,¢) > 0 for all € > 0 is called the support of X or
u, denoted as supp(Pyx). Fix = € supp(Px) € R? and reorder the data (X1,Y7),..., (X, Yy)
according to increasing values of || X; — z||. The reordered data sequence is denoted by

(X (@), Yy (@), -+, (X(n) (2), Yy (2))-
If lim, 0 k/n = 0, then prove that [|X ) (x) — || — 0 with probability one.

Show that if Xp is independent of the data and has probability measure Py, then [|.X 4 (Xo)—
Xo|| — 0 with probability one whenever k/n — 0.

3. Show that if Xy, X1,...,X,, are one dimensional i.i.d. random variables and each has a
continuous density f, then for all u > 0,

nh_)r{)loIP’ (n] X 1y(Xo) — Xo| > u|Xo) = e XoJu g g,

4. Let P,@ be two probability measures on (x,.4), and let v be the o—finite measure on
(x,A). Suppose that P and @ are mutually absolutely continuous, and dominated with
respect to v (we can always take v = P + @). Let p and ¢ be the densities of P and @ with
respect to v. Define the distance functions

o (Hellinger) h%(P,Q) = [(VdP — dQ)* = [(\/p — \/3)* dv
e (Total Variance) TV (P,Q) =1 — [ min(dP,dQ) = 1 — [ min(p, q) dv.
o (Kullback Leibler) KL(P, Q) = [log §5dP = [ plog £ dv.



By definition, for the product measures we have KL(P", Q") = nKL(P,Q) (but not with
the Hellinger or Total Variance distance). Show that

(i) TV(P,Q) < h(P,Q) < VKL(P,Q).

Also check that )

(i) KL(N(n.0%), N(s, o)) = 1112

5. Let X1,...,X, be an ii.d. sample from N(u,b?) where b is a known constant. Prove
using Le Cam’s two-points lemma that there exists a constant C such that

- C
supE[f — p| > —=
HER ﬁ7
for any estimator fi.

6.* Let Xi,...,X,, be an ii.d. sample from f € F where F denotes the set of twice
continuously differentiable densities on [0,1]. Prove that for an interior point zp € (0,1)
there exists a constant C' such that

s (o) — f(an)) " > On0
feF

for any density estimator f. [Hint: construct fo(z) = 1 and fi(z) = 1+h2 (K(%5%) — K(“"_Tio))
where Zg is taken to be a point in [0, 1] such that |xg — Zg| > 1/3 and K is the same kernel
used in lectures, that is, K(u) = aexp(—1/(1 —u?))1{|u| < 1}]

7. Use the fact that min(Xy,...,X,) = —max(—Xj,...,—X,) to state and prove the
extremal types theorem for minima.

8. Use integration by parts to prove the Mills ratio:
1 1 1
(, = 73)00) <1- W) < 6(y) fory>0.
Let (X,,) be independent N (0, 1) random variables, and let X(n) = maxi<i<n X;. Show that
there exist a,, > 0 and b,, such that ]P’(X(%;b” < x) LY G3(x). Prove that for x > 0,

oo

2ol =3 [T Loy < [0 ey < ot -2 [T oty

and deduce that R(z) = 1/x + O(1/23) as ¥ — oo. Use the Mills ratio again to show that
b, = (2log n)1/2+0{(2 log n)1/2}, and deduce that we may replace a,, with a,, = (2logn)~1/2.
Finally, deduce that we may replace b,, with

%(log logn + log 4)

= (2logn)'/? —
5 ( Ogn) (210gn)1/2




9. Let (X;,) be independent with distribution function F’, and let X,y = maxj<i<, X;. In
each case below, where F' is the distribution function corresponding to the given distribution,

. . . . Xiny—bn
find constants a,, > 0, b, and a nondegenerate distribution function G such that P(% <

x) LYe! (x). Further, find constants v, > 0 and 3, in terms of standard elementary functions,
such that we may replace a,, with a,, and b, with §,: (i) U(a,b); (ii) Weibull(«) (hint: look
up Karamata’s theorem on integrals involving slowly varying functions); (iii) Lognormal; (iv)
Pareto(a); (v) Cauchy.

10. Let (X,,) be independent Bernoulli(1/2) random variables, and let X, = maxi<;<, X;.
Let (x,,) be an arbitrary sequence of real numbers. By considering separately the the two cases
where z,, < 1 infinitely often, and where z,, > 1 eventually, show that if P(X,) < ) — p,
then p = 0 or p = 1. Deduce that there do not exist constants a,, > 0, b,, and a nondegenerate

e : X(ny—bn
distribution function G such that P(% < z) 4 G(z).

Generalise this argument to any distribution function F' such that z4 = inf{y : F\(y) > 1} is
finite and such that F' has a jump at x.

11. (a) Let (X,,) be independent with distribution function F', and let X (n) = MaxX1<i<n X;.
Let 7 € [0,00] and (uy,) be a sequence of real numbers. By first considering 7 € [0, 00), show
that P(X(,) < un) — €7 as n — oo if and only if n{l — F(u,)} — 7 as n — oco.

(b) Now let X(1) = minj<;<, X;, and suppose (vp) is a sequence such that nF(v,) — 7, for
some 7 € [0,00]. If also n{1 — F(u,)} — 7 € [0, 00|, show that

[P(X(l) > vn,X(n) < Up) — e~ (T,

Deduce that if there exist constants a,, > 0, b,, and «,, > 0, §,, and nondegenerate distribution
functions G and H such that

Xn *bn X — Pn
P<U§x> iG(.ﬁ) and P<(1)B§$> i>H(x),

an (679

then

Xy — by X1y — B
P(” <z P y) 4 G H(y).
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