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1. Let g∗ : Rd → {0, 1} be the Bayes decision rule. Prove that

(i) P(g∗(X) 6= Y ) = E {min(η(X), 1− η(X))} .

Now, for any decision g : Rd → {0, 1}, show that

(ii) P(g∗(X) 6= Y ) ≤ P(g(X) 6= Y ).

Also, for η̃(x) which approximates η using the plug-in rule g̃(x) = 1 if η̃(x) ≥ 1/2, prove that

(iii) P(g̃(X) 6= Y )− P(g∗(X) 6= Y ) ≤ 2E|η(X)− η̃(X)|.

2.* Denote the probability measure for X by PX . Let Sx,ε be the closed ball centred at x of
radius ε > 0. The collection of all x with PX(Sx,ε) > 0 for all ε > 0 is called the support ofX or
µ, denoted as supp(PX). Fix x ∈ supp(PX) ∈ Rd and reorder the data (X1, Y1), . . . , (Xn, Yn)
according to increasing values of ||Xi − x||. The reordered data sequence is denoted by

(X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x)).

If limn→∞ k/n = 0, then prove that ||X(k)(x)− x|| → 0 with probability one.

Show that if X0 is independent of the data and has probability measure PX , then ||X(k)(X0)−
X0|| → 0 with probability one whenever k/n→ 0.

3. Show that if X0, X1, . . . , Xn are one dimensional i.i.d. random variables and each has a
continuous density f , then for all u > 0,

lim
n→∞

P
(
n|X(1)(X0)−X0| > u|X0

)
= e−2f(X0)u a.s.

4. Let P,Q be two probability measures on (χ,A), and let ν be the σ−finite measure on
(χ,A). Suppose that P and Q are mutually absolutely continuous, and dominated with
respect to ν (we can always take ν = P +Q). Let p and q be the densities of P and Q with
respect to ν. Define the distance functions

• (Hellinger) h2(P,Q) =
∫

(
√
dP −

√
dQ)2 =

∫
(
√
p−√q)2 dν

• (Total Variance) TV (P,Q) = 1−
∫

min(dP, dQ) = 1−
∫

min(p, q) dν.

• (Kullback Leibler) KL(P,Q) =
∫

log dP
dQdP =

∫
p log p

q dν.
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By definition, for the product measures we have KL(Pn, Qn) = nKL(P,Q) (but not with
the Hellinger or Total Variance distance). Show that

(i) TV (P,Q) ≤ h(P,Q) ≤
√
KL(P,Q).

Also check that

(ii) KL(N(µ1, σ
2), N(µ2, σ

2)) =
(µ1 − µ2)2

2σ2
.

5. Let X1, . . . , Xn be an i.i.d. sample from N(µ, b2) where b is a known constant. Prove
using Le Cam’s two-points lemma that there exists a constant C such that

sup
µ∈R

E|µ̃− µ| ≥ C√
n
,

for any estimator µ̃.

6.* Let X1, . . . , Xn be an i.i.d. sample from f ∈ F where F denotes the set of twice
continuously differentiable densities on [0, 1]. Prove that for an interior point x0 ∈ (0, 1)
there exists a constant C such that

sup
f∈F

E
(
f̃(x0)− f(x0)

)2
≥ Cn−4/5

for any density estimator f̃ . [Hint: construct f0(x) = 1 and f1(x) = 1+h2
(
K(x−x0h )−K(x−x̃0h )

)
where x̃0 is taken to be a point in [0, 1] such that |x0 − x̃0| ≥ 1/3 and K is the same kernel
used in lectures, that is, K(u) = a exp(−1/(1− u2))1{|u| < 1}.]

7. Use the fact that min(X1, . . . , Xn) = −max(−X1, . . . ,−Xn) to state and prove the
extremal types theorem for minima.

8. Use integration by parts to prove the Mills ratio:(1

y
− 1

y3

)
φ(y) < 1− Φ(y) <

1

y
φ(y) for y > 0.

Let (Xn) be independent N(0, 1) random variables, and let X(n) = max1≤i≤nXi. Show that

there exist an > 0 and bn such that P
(X(n)−bn

an
≤ x

) d→ G3(x). Prove that for x > 0,

1

x2
φ(x)− 3

∫ ∞
x

1

y3
φ(y) dy <

∫ ∞
x
{1− Φ(y)} dy < 1

x2
φ(x)− 2

∫ ∞
x

1

y3
φ(y) dy,

and deduce that R(x) = 1/x + O(1/x3) as x → ∞. Use the Mills ratio again to show that
bn = (2 log n)1/2+o

{
(2 log n)1/2

}
, and deduce that we may replace an with αn = (2 log n)−1/2.

Finally, deduce that we may replace bn with

βn = (2 log n)1/2 −
1
2(log log n+ log 4π)

(2 log n)1/2
.
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9. Let (Xn) be independent with distribution function F , and let X(n) = max1≤i≤nXi. In
each case below, where F is the distribution function corresponding to the given distribution,

find constants an > 0, bn and a nondegenerate distribution function G such that P
(X(n)−bn

an
≤

x
) d→ G(x). Further, find constants αn > 0 and βn, in terms of standard elementary functions,

such that we may replace an with αn and bn with βn: (i) U(a, b); (ii) Weibull(α) (hint: look
up Karamata’s theorem on integrals involving slowly varying functions); (iii) Lognormal; (iv)
Pareto(α); (v) Cauchy.

10. Let (Xn) be independent Bernoulli(1/2) random variables, and let X(n) = max1≤i≤nXi.
Let (xn) be an arbitrary sequence of real numbers. By considering separately the the two cases
where xn < 1 infinitely often, and where xn ≥ 1 eventually, show that if P(X(n) ≤ xn) → ρ,
then ρ = 0 or ρ = 1. Deduce that there do not exist constants an > 0, bn and a nondegenerate

distribution function G such that P
(X(n)−bn

an
≤ x

) d→ G(x).

Generalise this argument to any distribution function F such that x+ = inf{y : F (y) ≥ 1} is
finite and such that F has a jump at x+.

11. (a) Let (Xn) be independent with distribution function F , and let X(n) = max1≤i≤nXi.
Let τ ∈ [0,∞] and (un) be a sequence of real numbers. By first considering τ ∈ [0,∞), show
that P(X(n) ≤ un)→ e−τ as n→∞ if and only if n{1− F (un)} → τ as n→∞.

(b) Now let X(1) = min1≤i≤nXi, and suppose (vn) is a sequence such that nF (vn) → η, for
some η ∈ [0,∞]. If also n{1− F (un)} → τ ∈ [0,∞], show that

P(X(1) > vn, X(n) ≤ un)→ e−(τ+η).

Deduce that if there exist constants an > 0, bn and αn > 0, βn and nondegenerate distribution
functions G and H such that

P
(
X(n) − bn

an
≤ x

)
d→ G(x) and P

(
X(1) − βn

αn
≤ x

)
d→ H(x),

then

P
(
X(n) − bn

an
≤ x,

X(1) − βn
αn

≤ y
)

d→ G(x)H(y).
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