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Efficient functional estimation



Density Estimation

Given an independent and identically distributed sample Xi, ..., X, taking
values in RY, a classical question in statistics is to estimate the density f.

The rates of convergence are typically slower than the parametric rate
n~1/2. For example, over Holder balls Y (B, L) of densities supported on
[0,1]¢ we have that

~ __B
inf sup E[f — flo =< n 25+,

fFex(A.L)



Integral functional estimation

In many situations it is not the whole density f we are interested in, but a
summary of the form

H(f) = /Rd f(x)y(f(x), x) dx = By (F(X), X).

The rates of convergence here can be quicker, and in many problems we
can find efficient estimators which satisfy

n2(A, — H) % N0, 02),

where a% is the best possible variance.



For a random variable X with density f we can define different notions of
the entropy, such as

@ The Shannon entropy
H(X) = H(f) = —/flogf — _Elog f(X).

@ For o # 1, the Rényi entropy

Ha(X) = Ho(f) = 1ialog(/ fa).

These are often thought of as measures of the structure or unpredictability
of the distribution of X.




Entropy estimation

Applications include tests of normality (vasicek, 1976), dimension reduction (Huber,
1085), image alignment (viola and Wells, 1097), independent component analysis
(Comon, 1994), €Stimation of intrinsic dimension (Carter et al., 2010) and estimation of
information flows in deep neural networks (Goldfield, Greenewald and Polyanskiy, 2018).
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Two-sample functionals

We can also consider the estimation of two-sample functionals of the form

T(F.8) = [ F(00(F (). g(x).)

given i.i.d. samples Xi,..., Xm ~fand Yy,..., Y, ~g.

Here we can also consider efficient estimation, and try to find the rate of
convergence in m and n.



A class of interesting functionals of this form is the class of f—divergences,
with

() = [ (59 ) ox

for some convex ¢ with p(1) = 0.

o KL divergence
¢
T(f,g) = /flog
g

o Rényi divergence

T(f,g) = ozil Iog</f<;)a1>.

Estimation of such quantities is useful is problems such as two-sample
testing (Kanamori et al, 2012) and learning on spaces of distributions (psczos et al., 2012).




Non-smooth functionals

Many of the functionals we are interested in are non-smooth because of
their behaviour in low-density regions.

A Taylor expansion of, e.g., Shannon entropy around a density estimator f
yields
H(f) = —/ f(x)log f(x) dx
Rd

- ] ) log f(x) o ;(/Rd f;((:)) dx — 1>.

When f is bounded away from zero on its support, one can estimate the
(smaller order) second term to obtain efficient estimators (Laurent, 1996).

We do not make such assumptions.



Nearest neighbour estimators

Nearest neighbour estimators have proved very popular in the
nonparametric statistics literature for the estimation of density functionals.
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Writing P(k),i HX(,(), Xi|| and hy(r) = P(|| X1 — x|| < r) = Vuf(x)r d
we have hx.(pk),i) 4 (k) ~ Beta(k, n — k), so that Vyf(X ) od Py & k/n.



Nearest neighbour estimators

In the one-sample setting we can consider

A 1 k
Hn = nZTﬁ()J,Xi)

i—1 ”Vdp?k
) rd/2
with Vy = F+d/2) and P(k),i = HX(k)(XI) — X,H

In the two-sample setting we can similarly consider

# 1 s kx ky X
™ m mV., 09 " nV, ¢ N
iz1 dP(kx)ix MV dP(ky),iy

with p(ky)ix = [ Xike) (Xi) = Xill and piyy iy = [ Yiky) (Xi) — Xil|.



The Kozachenko—Leonenko estimator

In particular, the Kozachenko—Leonenko estimator of Shannon entropy has
been extensively studied Kozachenko and Leonenko (1987); Tsybakov and Van der Meulen (1996); Biau and
Devroye (2015); Singh and Péczos (2016); Delattre and Fournier (2017); Jiao, Gao and Han (2017); Gao, Oh and Viswanath

(2018).
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anp i 1
Z| ( o >z—nZIogf(X,-) = HY,
i=1

where W(k) ~ log k denotes the digamma function.



Weighted Kozachenko—Leonenko estimator

It turns out that, under regularity conditions and when d > 3, the bias of
the standard Kozachenko—Leonkenko estimator satisfies

M(k+2/d) Af(z)
2(d + 2V (k)n2/d Jra F(2)?/4

2/d
o)

Efl, 4y —H=— dx + o

When d > 4 this mean that we cannot achieve asymptotic efficiency with
this estimator.
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It turns out that, under regularity conditions and when d > 3, the bias of
the standard Kozachenko—Leonkenko estimator satisfies

M(k+2/d) Af(z)
2(d + 2V (k)n2/d Jra F(2)?/4

2/d
o)

Efl, 4y —H=— dx + o

When d > 4 this mean that we cannot achieve asymptotic efficiency with
this estimator.

We can consider a weighted sum I-A/,‘;" = Z};l wjH, (jy- The bias can be
reduced to o(n~1/?) by considering w € R¥ such that

k
Y w=1 and Z wj ”%/d)zowzl,...,w/zu.
j=1

Similar bias reduction can be carried out with more general one- and
two-sample functionals.



Controlling smoothness

For a smoothness parameter 8 > 0 we can define m =[] — 1 and

t /t
M 5(x) = inf{m >1: max<|!f( )(x )||>1

t€[m] f(x)
(m)(z)— f(m) /B
Vo ap (It L
v,2€Bx({2d/2M} 1), f(y)llz =yl
y#z

This provides a measure of the smoothness of f at x, such that
|f(y)/f(x) — 1| < 1/2 whenever

ly — x||Mr 5(x) < (84%/2)~1/(BD),



Classes of densities

For d € Nand 6 = (a, 3, \,v) € (0,00)* let Fy denote the set of densities
on RY and

x)4 1A
fd,gz{fe]-"d:ua(f)Su,HfHoogu,/Rdf(x){A/lff’fi))} gy},

where po(f) = [ ||x]|*f(x) dx and ||f||ec = Supycpra f(X).



@ The Ny(0, Iy) density belongs to Fq4 ¢ for any a, 5 > 0, X € (0,1) and
sufficiently large v.
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o The Beta-type density f(x) oc [|x||*~1(1 — ||x||)>~! belongs to Fu g
for any a, > 0, A € (0,b/(b+ d — 1)) and sufficiently large v.



Assumptions on the functional

Recall in the one-sample setting we estimate H(f) = [ f(x)y(f(x), x) dx.
We must make assumptions about the function ¥ (u, x).

For 5* > 0 let m* = [3*] — 1 and suppose that the m*th partial derivative
Yme = O™ ) /Ou™ exists, and that

(UG)E -k Ky|_18*
P(u+ eu,x) — Z Yo(u, x)| < L(u™" Vv u™)|e]

for € € (—eo,€). Also suppose that |u‘tpe(u, x)| < L(u™" v uX) for
£=0,1,...,m

Suppose that

sup sup max -1

e€(—r,r) u>0,xcRY

as r \,0.

I

{‘w u x—i—ex)

i o)



Assumption on the functional

This includes weighted Shannon entropy ¢ (u, x) = —w(x) log u for any
5%, k, K > 0 and uniformly continuous w.

This also includes weighted Rényi entropy v(u, x) = w(x)u®"! for any
f* >0, k=(a—1)_, K= (a—1)4+ and uniformly continuous w.



Risk of the weighted estimator

Define

AT o

. d d d 1
= _max(zﬁ’ 20BN2) +d 4B~ 2>\(1—C)>

<K K dK,)
¢=max{ —,—+ —

Fix d € N and § = (o, 8, \,v) € (0,00)* with ¢ <1/2 and 7 > 1/B*. If
kn=Y/8" — o0, kn=™ — 0 and our weights are chosen suitably then

sup

ME{ (= H)?} = V| =0,
fG]'-dﬁ

where V/(f) := Var (¢(f(X), X) + f(X)1(f(X), X)).




Risk of the weighted estimator

Define

C_ Eﬁ_i_@
= max PNDY o

(d d d 1 )
7 =1 — max — T

28" 2(BA2)+d 4B 2A(1 =)

Fix d € N and § = (o, 8, \,v) € (0,00)* with ¢ <1/2 and 7 > 1/B*. If
kn=Y/8" — o0, kn=™ — 0 and our weights are chosen suitably then

sup
fG]'-dﬁ

ME{ (= H)?} = V| =0,

where V/(f) := Var (¢(f(X), X) + f(X)1(f(X), X)).

For functionals with 8* = oo and densities with A = 1 and «, 8 = 0o the
result applies provided max(x, K) < 1/2.



Asymptotic Normality

If, in addition to the previous conditions, we have Vj > v~ 1 and
[ f(x)>=* dx < v then

2 (T ) o) o

as n — oo. Here di(F, G) = sup.cgr |F(t) — G(t)|.

This allows us to construct uniformly asymptotically valid confidence
intervals for H(f).



Super-oracle phenomenon

For o € (1/2,1), consider
Ho(f) = / f(x)* dx = Ef(X)* 1,
X

for which ¥(f) = f=1 fyp1(f) = (a — 1)f* ! and
nE{(H, — Ha(f))?} = o®Var(f(X)*71).

Remarkably, this outperforms the natural oracle estimator

Hy=n"1) F(X)" "
i=1



Two-sample functionals

Recall the two-sample functional
T(f.) = | G070, (). x)

For a similar weighted nearest neighbour estimator 7A_m7,,, we also have that

A

Tm,n - T(fa g)

d
— N(0,1),
m=1Vi(f,g) + n1Va(f, g) 1)

uniformly over suitable classes of densities (f, g) and functions ¢, where

Vi(f.g) := Var (6 (f(X, g(X), X) + F(X)éo(F(X), £(X), X) )

Va(f, ) := Var (£(¥)oor ((¥).8(¥). Y)).



Sketch of asymptotic normality proof

Consider the unweighted estimator
m

N 1 k k
Tm,n = g ¢< X dY ,X,').
m A%

d b
i \MVaPli.ix Vel

Writing

P(u, v,x) = ¢(u, v,x) — ¢(u, g(x), x) — ¢(f(x), v, x) + #(f(x), g(x), x)

we have that

B(F(x), g(x), x) = d10(f(x), 8(x), x) = dor(f(¥), 8(y),y) =0,

and so \~/1 = \72:0.



Sketch of asymptotic normality proof

We can therefore linearise T, ,, and write

Fon = Efmn = T3 BTN 4+ T2, —BTEL + op(m™ /2 4 n71/2),

+
where
~(1) 1 o kx
m = — ¢(’g(Xi)7XI>
m IZ_; depEij)fi’X
2) 1 & ky
mn = — f(Xi), ——F— Xi | —o(f(Xi),g(Xi),Xi) ¢
b= o0 %) (00 x) |



Sketch of asymptotic normality proof

We can therefore linearise T, ,, and write

Ton = ETmn= T —ETD + TG, —ETE, + 0p(m 2 4 n71/2),
where
~(1) (
w._1 ,g(x,->,x,-)
Z: de,O(kX) iX
). L { <f(X P x-) —o(F(X), g(X), Xi
m,n -— I 1 1 7g(XI)7XI .
Z anpgky)J.’Y < >
Moreover, ?121231 — Eﬂg% = ﬂ?) — ET,S2) + Op(m_l/z), where

. k
T’S2) = ]E|:¢<f(X1)7 Vdiyaxl) ‘ Yl?' ) Yn:| - T(f’g)

NVdP(ky) 1,y



Sketch of asymptotic normality proof

So
—i\_m,n - IE—i\_m,n = fr(nl) — Ej\_,(nl) —+ 7\_,(,2) _ E—i_,(,z) + Op(m71/2 + n71/2)’

and we have approximated 'IA'my,, as the sum of a random variable that only
depends on Xi,..., X, and a random variable that only depends on
Yi,..., Y.

It remains to show that

m72(TH —ETWH) 4 N, Vi) and  n2(TP —ETP) 2 N0, Va).



Sketch of asymptotic normality proof

Consider .
A1) 1 ( kx
T’ ==> ¢ ——5—8(X), Xi |.
m ,z; MVa (i) ix

We can partition RY using the Voronoi cells associated to a Poisson
process with intensity %f() Distant cells are roughly independent.




Local asymptotic minimax lower bound

Fix f satisfying our conditions. For t € R and a smooth function p, let
() = c(t)p(th(x)) F(x)

where ¢(t) is a normalising constant and

h(x) = B(F(x), %) + FORF(x), x) = E{(F(X), X) + F(X)in(F(X), X)}

so that Eh(X)? = V(f).



Local asymptotic minimax lower bound

Fix f satisfying our conditions. For t € R and a smooth function p, let
() = c(t)p(th(x)) F(x)

where ¢(t) is a normalising constant and

h(x) = B(F(x), %) + FORF(x), x) = E{(F(X), X) + F(X)in(F(X), X)}

so that Eh(X)? = V(f).

If 7 denotes the set of finite subsets of R, then for any estimator sequence
(Hn)y
~ 2
supliminf max nEr , , [{H,, — H(f,12,)} ] > V(f).

Jjex n—oo  tel

An analogous result holds for two-sample functionals.



Local asymptotic minimax lower bound

To conclude that our estimators are efficient we must show that they
achieve this lower bound. It suffices to show that f;(-) satisfies our
conditions for t sufficiently small.

This is true for Shannon and Rényi entropies, KL divergence and Rényi
divergence and other, sufficiently regular, functionals.



@ Standard nearest neighbour estimators can be efficient for d < 3, but
are typically not when d > 4.

@ By incorporating weights to cancel bias terms, we obtain efficient
estimators in arbitrary dimensions, subject to appropriate regularity
conditions.



Independence testing



Independence testing

Measuring dependence and testing independence are fundamental problems
in statistics, and are essential for model building, certain goodness-of-fit
tests, feature selection, independent component analysis and more.



Independence testing

Measuring dependence and testing independence are fundamental problems
in statistics, and are essential for model building, certain goodness-of-fit
tests, feature selection, independent component analysis and more.

Classical measures include:
@ Pearson's correlation (e Pearson, 1920);
@ Kendall's tau (kendal, 1938);
@ Hoeffding's D (Hoeffding, 1948).

These are limited to linear or monotonic dependence, or bivariate settings.
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Modern datasets often exhibit complex dependence which is not well
captured by these classical measures;
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Independence testing

Modern datasets often exhibit complex dependence which is not well
captured by these classical measures; see examples in bioinformatics (stever et
al, 2002), Climate science (Donges et al., 2000), NEUrOSCIENCE (Vicente et al., 2011), COMpuUter
security (Amiri et al., 2011) and Iinguistics (Nguyen and Eisenstein, 2017).

As a result, many new measures and tests have been proposed and studied
recently:

@ Distance covariance (Székely, Rizzo and Bakirov, 2007; Székely and Rizzo, 2013);
@ RKHS norms (Bach and Jordan, 2002; Gretton et al., 2005; Sejdinovic et al., 2013);
@ Multivariate rank-based tests (weihs, Drton and Meinshausen, 2018);

@ Empirical copula processes (kojadinovic and Holmes, 2009);

@ Sample space partitioning (Gretton and Gyérfi, 2010; Heller et al., 2016).

Each of these has its own advantages and disadvantages, and no
universally accepted measure exists.



Problem statement

Let Z = (X, Y) have a density f with repect to Lebesgue measure on RY,
and let fx and fy be the marginal densities of X and Y with respect to
Lebesgue measure on R% and RY respectively.

Given independent and identically distributed observations 73, ..., Z, of
Z, we wish to test the hypotheses

Hy : X 1LY wvs. Hi: XU Y.



Mutual information

We measure dependence by the mutual information (shannon, 1948)

//f(x y) log i)((X 3//() )dxdy.
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Mutual information

We measure dependence by the mutual information (shannon, 1948)

//f(x y) log i)((X 3//() )dxdy.

This is the KL divergence between f and fxfy, so is non-negative and zero
if and only if X 1L Y.

A consequence of the data processing inequality is that
I($(X); Y) = 1(X;Y)

whenever X and Y are conditionally independent given ¢(X) (eg. Kinney and
Awal, 2014). Mutual information is self-equitable.



Mutual information and entropy

Provided H(X), H(Y) and H(X, Y) are finite, we can write
I(X:Y) = H(X) + H(Y) — H(X, Y).

So, if we can estimate entropies then we can estimate mutual information.



Estimation of mutual information

We may estimate /(X; Y) using

Ih=HX+HY - AZ,

where, e.g., HZ = I:I,‘:'ji(Zl, ..., Zp) is a weighted Kozachenko-Leonenko
estimator of H(Z).



Estimation of mutual information

We may estimate /(X; Y) using

~

I.=H

+ lz/_HZ’

n

3%

where, e.g., HZ = I:I,‘:'ji(Zl, ..., Zp) is a weighted Kozachenko-Leonenko
estimator of H(Z).

By previous theory we have
"2 {0, — 1(X; V) S N(0, V(X; Y)),

where V(X;Y) = Varlog % for suitable choices of k and weights.



One known marginal

Suppose fy known. Generate {Y,.(b) ci=1,...,n,b=1,...,B} and
calculate
IO = (X, Y, L (X, YEPY).



One known marginal

Suppose fy known. Generate {Y,.(b) ci=1,...,n,b=1,...,B} and
calculate

ir(Ib) = i\n((Xla Y]_(b))7 ] (Xna Yrgb)))

We can now estimate a critical value for our test by

B
Ac(ln),B = inf{r eR: 1+ Z ﬂ{ﬂn”’zr} <(B+ 1)q},
b=1

the (1 — g)th quantile of {in, IA(,,l), cel IA,SB)}. We refer to the test that
rejects Hy if and only if 7, > CA'C(,n)’B by MINTknown(q).



Power of MINTknown

We may use earlier results on entropy estimation to perform a local power
analysis on MINTknown. For dx,dy € N and ¥ = (0, 6y) define

]:dx,dy,ﬂ = {(f,gY) € fdx—&—dy,exfdyﬂy (fy € fdyﬂy, fxgy c ]:dx—i-dy,e}

and, for b > 0, let

Fax.dy0(b) = {(ﬂgY) € Fdx,dy, : 1(F) > b}.



Power of MINTknown

We may use earlier results on entropy estimation to perform a local power
analysis on MINTknown. For dx,dy € N and ¥ = (0, 6y) define

Fdx,dy 9 = {(f,gY) € Fax+dy,0xXFdy.0y - fy € Fay 0,.fx8y € fdx+dy,9}

and, for b> 0, let

Fax.dy0(b) = {(f7gY) € Fdy,dy : 1(F) > b}.

For suitable ¥ and choices of tuning parameters there exists a sequence
(bn) such that b, = o(n~/?) and for each q € (0,1)

inf  Pe(fy> C{B) 1.
fEFdy dy 9 (bn)




Permutation test

If we do not have an approximation to either marginal distribution then we
may instead use a permutation test. We generate 71, ..., 75 uniformly
from the permutation group S, and calculate

/A(nb) = in((Xla ow(l))’ ) (X”’ Y”b(”)))
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Practical performance

Due to the local nature of our test statistics, we find that MINT tends to
perform well in settings in which the dependence is local, or in which the
scale of the dependence is different to the scale of the marginal
distributions.



Sinusoidal data

ML
i

0.04
frx vl Y
: Hirgptoh
0.02 | i i
.
0.00

fi(x,y) = %{1 +sin(i)sin(ly)}  for [=1,2,...
™
This example was identified by Sejdinovic et al. (2013) as challenging for

independence testing.
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oracle choices of k, ky, as well as power curves for MINTav, in which we
average over k € {1,...,20} in MINT. In all cases we take B = 100.
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Simulation study

In the following we present power curves for MINT and MINTknown with
oracle choices of k, ky, as well as power curves for MINTav, in which we
average over k € {1,...,20} in MINT. In all cases we take B = 100.

For comparison we present the power curves for tests based on:
@ Empirical copula processes in the R package copula (Hofert et al., 2017);
@ RKHS methods in the R package dHSIC (pfister and Peters, 2017);
@ Distance covariance in the R package energy (Riszo and Szekely, 2017);
o

a multivariate extension of Hoeffding’s D in the R package SymRC (weins

et al., 2017).

We present settings in which (X, Y') have sinusoidal distributions, as well
as a multivariate setting (X1, X2, Y1, Y2) in which (X1, Y1) have the
sinusoidal distributions and X, Y2 € U[0, 1] are independent.



Power
Power

Power curves as functions of the respective shape parameters for MINT (—), MINTknown (-~-),
MINTav (), HSIC (—), Distance covariance (— ), Copula (—), Hoeffding's D (—). The
marginals are univariate (left) and bivariate (right).



Using recently-developed efficient entropy estimators we have constructed
an independence test based on mutual information. This test has good
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Using recently-developed efficient entropy estimators we have constructed
an independence test based on mutual information. This test has good
theoretical properties in arbitrary dimensions and we have shown that it
can perform well in practice.

The ideas easily generalise to the estimation of conditional mutual
information /(X; Y|W) and /(Xy; X2;...; Xp), and to the testing of
conditional independence and mutual independence between p random
vectors.



@ Nearest neighbour methods offer very intuitive, computationally
feasible approaches for many nonparametric problems

@ Our understanding of their theoretical properties is improving rapidly,
but there is still more to be done!
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