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Independence testing

Independence testing is one of the most studied problems in statistics.
Given data on a random pair (X ,Y ), we aim to test

H0 : X is independent of Y .

Middle school High Bachelor’s Master’s PhD

or lower school or higher

Never married 18 36 21 9 6
Married 12 36 45 36 21
Divorced 6 9 9 3 3
Widowed 3 9 9 6 3

Source: https://www.spss-tutorials.com/chi-square-independence-test/.

With discrete variables and pjk = P(X = j ,Y = k), we test

H0 : pjk = rjqk for some (rj), (qk).
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The χ2 test

In such contingency tables, it is standard practice to use Pearson’s χ2 test,
where we compare the test statistic

T =
J∑

j=1

K∑
k=1

(ojk − ejk)2

ejk

to the quantiles of the χ2
(J−1)(K−1) distribution.

j/k 1 2 3 4 5

1 o11 o12 o13 o14 o15

2 o21 o22 o23 o24 o25

3 o31 o32 o33 o34 o35

4 o41 o42 o43 o44 o45

ejk =
oj+ · o+k

n

Although very popular, this test has serious drawbacks.
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Asymptotic null distributions

It is well known that, for a fixed null distribution P, we have

T
d→ χ2

(J−1)(K−1), so that Pearson’s test is (pointwise) asymptotically
valid.

However, this convergence is not uniform. For a fixed λ > 0 set
p =

√
λ/n and consider the null distribution given by:

p2 p(1− p)

p(1− p) (1− p)2

Here, we have

T
d→ (Z − λ)2

λ
,

where Z ∼ Poi(λ).
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Lack of Type I error control

If we compare T to the 99th quantile of the χ2
1 distribution we get
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Continuous data

Beyond discrete data, there is a vast literature on testing independence of
continuous variables.

Classical measures include:

Pearson’s correlation (e.g. Pearson, 1920);

Kendall’s tau (Kendall, 1938);

Hoeffding’s D (Hoeffding, 1948).

These are limited to linear or monotonic dependence, or bivariate settings.
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Background

Modern datasets often exhibit complex dependence which is not well
captured by these classical measures.

As a result, many new measures and tests have been proposed and studied
recently:

HSIC (Gretton et al., 2005; Sejdinovic et al., 2013; Pfister et al., 2018; Albert et al.,

2019);

Distance covariance (Székely, Rizzo and Bakirov, 2007; Székely and Rizzo, 2013);

Nearest neighbour methods (B. and Samworth, 2019);

Rank-based tests (Weihs et al., 2017; Shi, Drton and Han, 2019; Deb and Sen,

2019);

Empirical copula processes (Kojadinovic and Holmes, 2009);

Sample space partitioning (Gretton and Györfi, 2010; Heller et al., 2016).
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Aims

What do we want from an independence test?

Validity: a test that reliably controls the Type I error across the
entire null.

Power: as large as possible among valid tests.

We will see that we can achieve both of these aims with permutation tests.
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Permutation tests

A practical and popular approach for independence testing is to carry out a
permutation test (e.g. Pitman, 1938; Fisher, 1935).

For any test statistic T : X n × Yn → R and i.i.d. uniformly random

permutations π1, . . . , πB ∈ Sn we can set Y
(b)
i = Yπb(i) and calculate the

p-value

p =
1 +

∑B
b=1 1{T (X ,Y (b)) ≥ T (X ,Y )}

1 + B
.
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Size of permutation tests

Under H0, the datasets (X ,Y ), (X ,Y (1)), . . . , (X ,Y (B)) are
exchangeable.
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Hence, T (X ,Y ),T (X ,Y (1)), . . . ,T (X ,Y (B)) are exchangeable.

The rank of T (X ,Y ) among T (X ,Y ),T (X ,Y (1)), . . . ,T (X ,Y (B)) is
uniformly distributed on {1, . . . ,B + 1}, and so

P(p ≤ α) ≤ bα(B + 1)c
B + 1

≤ α

for all α ∈ [0, 1].
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Asymptotic power of permutation tests

Many studies of the power of permutation tests use the approach of
Hoeffding (1952).

Theorem (Hoeffding (1952))

Say (X1,Y1) ∼ Pn for some sequence (Pn). Suppose that

P(T (X ,Y (1)) ≤ u,T (X ,Y (2)) ≤ v)→ R(u)R(v)

and P(T (X ,Y ) ≤ u)→ H(u) for distribution functions H,R. If H and R
are continuous at R−1(1− α) and R is strictly increasing at R−1(1− α),
then, if B →∞, we have

P(p ≤ α)→ 1− H
(
R−1(1− α)

)
as n→∞.

This can be used for results on power against sequences of local
alternatives.
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Permutation tests

Permutation tests:

require no assumptions for non-asymptotic Type I error control;

can be used with any test statistic.

Despite the popularity of permutations tests, many open problems remain
concerning their power properties. Existing works typically study pointwise
asymptotics or relatively simple settings (e.g. Hoeffding, 1952; Romano, 1989;

Lehmann and Romano, 2005; Albert et al., 2015).

We show that they can achieve minimax rate optimal power.
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Outline of the rest of the talk

1 Problem statement and formalisation

2 U-statistic permutation tests
Discrete case
Continuous case
General upper bound

3 Lower bounds

4 Distributional results and power function
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Problem statement

Given i.i.d. pairs (X1,Y1), . . . , (Xn,Yn) taking values in X × Y, we
construct tests ψn of the null hypothesis of independence

H0 : X ⊥⊥ Y .

Writing P0 for the set of all null distributions, we insist that

ψn ∈ Ψn(α) :=
{
ψ : (X × Y)n → [0, 1] : sup

P∈P0

EP(ψ) ≤ α
}
,

the set of (randomised) independence tests with size ≤ α.
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Strength of dependence

For power results, we assume (X ,Y ) has density f w.r.t. µ = µX ⊗ µY ,
such that

(X × Y, µ)

is a separable measure space.

Our upper bounds are general, and lower bounds match in settings such as

Discrete data: X × Y = {1, . . . , J} × {1, . . . ,K} some
J,K ∈ N ∪ {∞}.
Continuous data: X × Y = [0, 1]dX +dY .

Infinite-dimensional data: X × Y = [0, 1]N.
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Minimax framework

Given a suitable (e.g. smooth) class P1 of distributions, define the
alternatives

P1(ρ) =
{
P ∈ P1 : D(P) ≥ ρ2

}

D(f ) =

∫
(f − fX fY )2 dµ

P0

P1(ρ)

ρ

For a test ψn and β ∈ (0, 1− α) we define the minimax separation radius

ρ∗n,α,β(P1, ψn) = inf
{
ρ > 0 : sup

P∈P0

EP(ψ) + sup
P∈P1(ρ)

EP(1− ψ) ≤ α + β
}
.
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Minimax framework

We look for tests ψ∗n such that

ρ∗n,α,β(P1, ψ
∗
n) � inf

ψn∈Ψn(α)
ρ∗n,α,β(P1, ψn),

and will call such tests rate optimal.

Minimax rate optimal tests were found for certain univariate problems
by Ingster (1989), Ermakov (1990) and Ingster (1996).

In the multivariate setting, Albert et al. (2019) finds minimax rates
with a test using an oracle critical value.

In independent work, Kim, Balakrishnan and Wasserman (2021)
proved the minimax rate optimality of HSIC-based permutation tests.
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Hardness result

In typical nonparametric problems, uniform power results are impossible
without some such assumptions.

Theorem (Continuous case)

Suppose X × Y = [0, 1]dX +dY with µX , µY Lebesgue measures, and let
ψn : (X × Y)n → [0, 1] be a test such that∫

ψn dµ
⊗n ≤ α.

Then, for any ε > 0 and ρ ∈ (0, 2−1/2], there exists a density f such that
D(f ) = ρ2 and

Ef (ψn) ≤ α + ε.

Given a test, we can always find a type of alternative it has poor power
against.
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Smoothness

Letting (pjk)j∈J ,k∈K = (pXj p
Y
k )j∈J ,k∈K be an orthonormal basis for L2(µ),

for f ∈ L2(µ) define

ajk =

∫
pjk f dµ, aj• =

∫
pXj fX dµX , a•k =

∫
pYk fY dµY

and, given θ ∈ [0,∞]J×K, further define

Sθ(f ) =
∑

j∈J ,k∈K
θ2
jk{ajk(f )− aj•(f )a•k(f )}2.

We will consider classes of the form

P1 =
{
P : P has density f with Sθ(f ) ≤ r2

}
.
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1 Problem statement and formalisation

2 U-statistic permutation tests
Discrete case
Continuous case
General upper bound

3 Lower bounds

4 Distributional results and power function
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Test statistic

Now that we have formalised the problem, we search for suitable tests.

Our test statistic will be an estimator of the dependence measure

D(f ) =

∫
(f − fX fY )2 dµ =

∑
j∈J ,k∈K

(ajk − aj•a•k)2.

For a subset M⊆ J ×K we write

h
(
(x1, y1), (x2, y2), (x3, y3), (x4, y4)

)
=

∑
(j ,k)∈M

{pjk(x1, y1)pjk(x2, y2)− 2pjk(x1, y1)pjk(x2, y3)

+ pjk(x1, y2)pjk(x3, y4)
}

and

D̂n =
1

4!
(n

4

) ∑
i1,i2,i3,i4
distinct

h
(
(Xi1 ,Yi1), (Xi2 ,Yi2), (Xi3 ,Yi3), (Xi4 ,Yi4)

)
.
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Permutation test

For b = 1, . . . ,B we generate independent uniformly random permutations
π1, . . . , πB and set

D̂
(b)
n =

1

4!
(n

4

) ∑
i1,i2,i3,i4
distinct

h
(
(Xi1 ,Yπb(i1)), (Xi2 ,Yπb(i2)), (Xi3 ,Yπb(i3)), (Xi4 ,Yπb(i4))

)
.

Calculate the p-value

p =
1 +

∑B
b=1 1{D̂

(b)
n ≥ D̂n}

1 + B

and reject H0 if and only if p ≤ α.
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Discrete case

In the discrete case X × Y = {1, . . . , J} × {1, . . . ,K}, the test statistic
takes a simpler form.

D̂n =
1

n(n − 3)

J∑
j=1

K∑
k=1

(ojk − ejk)2 − 4

n(n − 2)(n − 3)

J∑
j=1

K∑
k=1

ojkejk + . . . ,

where we omit terms only depending on oj+ and o+k .

Using Patefield’s algorithm we can generate the permuted tables according
to

P
(
(o

(1)
jk ) = (njk)|(ojk)

)
=

(
∏J

j=1 oj+!)(
∏K

k=1 o+k !)

n
∏J

j=1

∏K
k=1 njk !

.
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Discrete case

We can take

P1(ρ) =

{
P : D(f ) =

J∑
j=1

K∑
k=1

{f (j , k)− fX (j)fY (k)}2 ≥ ρ2

}
.

Let ψn be the permutation test described above.

Theorem

Fix α, β ∈ (0, 1) such that α + β < 1. Then there exists
C = C (α, β) ∈ (0,∞) such that

sup
P∈P0

EP(ψn) + sup
P∈P1(Cn−1/2)

EP(1− ψn) ≤ α + β

for all n ∈ N, i.e. ρ∗n,α,β(P1, ψn) . n−1/2.

In fact, D̂n is the minimum variance unbiased estimator of D.
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Sparse alternative

Consider the table with J = 5,K = 8 and with cell probabilities

pij =
2−(j+k)

(1− 2−J)(1− 2−K )
+ε(1{j=k=1}+1{j=k=2}−1{j=1,k=2}−1{j=2,k=1}).
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Power curves of the USP test (black), compared with Pearson’s test (left) and the G -test (right)
(n = 100, α = 0.05). Chi-squared quantile versions of these other tests are in blue (left) and
purple (right); permutation versions are in red (left) and green (right).
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Continuous case

When X = [0, 1]dX and Y = [0, 1]dY we let (pjk) be the Fourier basis and
take

P1(ρ) =

{
P :
∑
j ,k

(|j |sX ∨ |k|sY ){ajk − aj•a•k}2 ≤ r2,

∫
(f − fX fY )2 ≥ ρ2

max(‖f ‖∞, ‖fX‖∞, ‖fY ‖∞) ≤ A

}
.

Let ψn be the permutation test described above.

Theorem

There exists C = C (α, β, sX , sY , dX , dY ,A) ∈ (0,∞) such that

ρ∗n,α,β(P1, ψn) ≤ C
( rd/(2s)

n

)2s/(4s+d)
,

where d := dX + dY and s := d/(dX/sX + dY /sY ).
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Continuous data

We consider data in [0, 1]2 with

fω(x , y) = 1 + sin(2πωx) sin(2πωy).
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Continuous data

fω(x , y) = 1 + sin(2πωx) sin(2πωy).

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

ω

P
ow

er

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

ω

P
ow

er

Estimated power functions in the Sobolev example for our U-statistic permutation test (black)
with M = 2, n = 100 (left) and M = 4, n = 200 (right), HSIC (red), distance covariance (blue),
copula (purple) and MINTav (green). Error bars show two standard errors; other parameters:
α = 0.05, B = 99.
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General upper bounds

Both previous upper bounds (and more), are consequences of the following
general upper bound, holding when we have

P1 :=

{
P : Sθ(f ) =

∑
j∈J ,k∈K

θ2
jk{ajk(f )− aj•(f )a•k(f )}2 ≤ r2

max(‖f ‖∞, ‖fX‖∞, ‖fY ‖∞) ≤ A

}
.

Let ψn be our general permutation test.

Theorem

Fix α, β ∈ (0, 1) such that α + β < 1. Then there exist C ,C ′ > 0,
depending only on α, β, θ and A, such that when nr2 ≥ C ′ we have

ρ∗n,α,β(P1, ψn) ≤ C inf
∅6=M⊆J×K

max

{
r

inf{θjk : (j , k) 6∈ M}
,
|M|1/4∧ ‖h‖1/2

∞

n1/2

}
.
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Upper bounds

We must choose M to balance the first two terms in the maximum.

Let ω : N→ J ×K be such that θω(1) ≤ θω(2) ≤ . . ., and write

m0(t) = min
{
m ∈ N : m1/2θ2

ω(m) > t
}
.

Corollary

ρ∗(n, α, β, ξ) ≤ C inf
m∈N

max

{
r

θω(m)
,
m1/4

n1/2

}
≤ C

m0(nr2)1/4

n1/2
.

Actually, we can choose M adaptively and achieve rate

C
log1/4 n

n1/2
m

1/4
0

(
nr2

log1/2 n

)
.
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Lower bounds

We provide minimax lower bounds in the case X × Y = [0, 1]dX +dY .

We lower bound a smaller notion of minimax risk given by

R̃(n, ξ, ρ) = inf
ψ∈Ψn(1)

{
EP0(ψ) + sup

P∈P1(ρ)
EP(1− ψ)

}
,

where P0 = Unif([0, 1]dX +dY ).

For γ ∈ (0, 1) write

ρ̃∗(n, γ, ξ) = inf{ρ > 0 : R(n, ξ, ρ) ≤ γ}.

We have ρ̃∗(n, α + β, ξ) ≤ ρ∗(n, α, β, ξ). When our upper and lower
bounds match the risks R and R̃ are equivalent (up to constants).
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General lemma

Lemma

Let (ajk)j∈J\{j0},k∈K\{k0} be a deterministic square-summable array of real
numbers, let (ξjk)j∈J\{j0},k∈K\{k0} be an i.i.d. array of Rademacher
random variables, and define a random element of L2(µ) by

q(x , y) := 1 +
∑

j∈J\{j0},k∈K\{k0}

ajkξjkpjk(x , y).

If q ≥ 0 then q is a density. Let f
d
= q|{q ≥ 0} and write EP⊗nf for the

mixture distribution on (X × Y)n. Then

d2
TV

(
P⊗np0

,EP⊗nf

)
≤

exp
( (n+1)2

2

∑
j∈J\{j0},k∈K\{k0} a

4
jk

)
4P(q ≥ 0)2

− 1

4
.

When f takes values in Fξ(ρ) then we have

R̃(n, ξ, ρ) ≥ 1− dTV

(
P⊗np0

, (EPf )⊗n
)
.
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Fourier lower bounds

q(x , y) := 1 +
∑

j∈J\{j0},k∈K\{k0}

ajkξjkpjk(x , y).

Realisations of q when X × Y = [0, 1]2 and we use the Fourier basis.
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Fourier lower bounds

With the Fourier basis on [0, 1]d we may use empirical process techniques
to bound

P(q < 0) = P
(

sup
x ,y

∑
j ,k

ajkξjkpjk(x , y) > 1
)
.

We show that when nr2 ≥ 2 and (rd/n2s)1/(4s+d) . 1/ log1/2(n) we have

ρ̃∗(n, γ, ξ) &
( rd/(2s)

n

)2s/(4s+d)
,

to match our upper bound in (n, r).
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Approximate power function

Upper bounds so far are based on bounds on the mean and variance of
permuted U-statistics.

With a more sophisticated analysis we can give more detailed results.
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Approximate power function

We can show that D̂n, D̂
(1)
n , . . . , D̂

(B)
n are approximately normally

distributed and approximately independent for local alternatives.

Hence, with j = B + 1− dα(B + 1)e,

P(Reject) = P
(
D̂n > jth largest D̂

(b)
n

)
≈ EΦ̄

(
W(j) − ED̂n/sd(D̂n)

)
,

where W(j) is the jth order statistic of a standard normal sample.
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Degenerate U-statistics

Under H0, our statistic

D̂n =
1

4!
(n

4

) ∑
i1,i2,i3,i4
distinct

h
(
(Xi1 ,Yi1), (Xi2 ,Yi2), (Xi3 ,Yi3), (Xi4 ,Yi4)

)
.

is degenerate, meaning that

E
{
h
(
(x1, y1), (X2,Y2), (X3,Y3), (X4,Y4)

)}
= 0

for all x1, y1.

In fact we may approximate

D̂n ≈
(
n

2

)−1 ∑
i1<i2

h2

(
(Xi1 ,Yi1), (Xi2 ,Yi2)

)
for appropriate h2.
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Approximate normality of U-statistics

Suppose

U =

(
n

2

)−1 ∑
i1<i2

h(Zi1 ,Zi2)

with h symmetric, E{h(Z1,Z2)2} <∞ and Eh(z ,Z ) = 0 for all z .

Classical asymptotic theory says that(
n

2

)1/2

U
d→W =

∞∑
j=1

λj(W
2
j − 1)

for i.i.d. standard Gaussians (Wj) and a square-summable sequence (λj).

When h = hn this limiting distribution may no longer be appropriate. If
the (λj) become more diffuse then a normal approximation may hold.
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Approximate normality of U-statistics

For each q ∈ (2, 3] there exists Cq > 0 depending only on q such that

sup
x∈R

∣∣∣P(W ≤ 21/2‖λ‖2x
)
− Φ(x)

∣∣∣ ≤ min
{

1,Cq
‖λ‖q
‖λ‖2

}
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The above plot shows the pdf when λj = j−p1{j≤1000}.
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Approximate normality of U-statistics

When

U =

(
n

2

)−1/2 ∑
i1<i2

h(Zi1 ,Zi2),

write g(x , y) := E{h(x ,Z )h(y ,Z )}.

Proposition (Döbler and Peccati (2019), Theorem 3.3)

If E{h(Z1,Z2)2} = 1, Eh(z ,Z ) = 0 for all z, then there exists a universal
constant C such that

dW(U,W )2 ≤ C max

[
E{g(Z1,Z2)2}, E{h(Z1,Z2)4}

n

]
,

where W ∼ N(0, 1), and dW is the 1-Wasserstein distance.
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Approximate normality of permuted U-statistics

We have a similar result for permuted U-statistics of the form

U(1) =

(
n

2

)−1/2 ∑
i1<i2

h
(
(Xi1 ,Yπ(i1)), (Xi2 ,Yπ(i2))

)
where π is a uniformly random permutation and where h additionally
satisfies

Eh
(
(x , y), (x ′,Y1)

)
= Eh

(
(x , y), (X1, y

′)
)

= 0

for all x , x ′ ∈ X and y , y ′ ∈ Y.

Proposition

There exists a universal constant C > 0 such that

dW(U(1),W )2 ≤ C max

[
E
∣∣E{h((X1,Y2), (X3,Y1)

)
|X3,Y2

}∣∣,
E
{
g
(
(X1,Y2), (X3,Y4)

)2}
,

1

n
max
σ∈S4

E
{
h
(
(X1,Yσ(1)), (X2,Yσ(2))

)4}]
.
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Power function

In the dX = dY = 1 Fourier problem, the signal strength is given by

E(D̂n − D̂
(1)
n )

Var1/2(D̂
(1)
n )

∼
(n

2

)1/2∑
(j ,k)∈M |ajk − aj•a•k |2

σM,XσM,Y
=: ∆f ,

where σ2
M,X :=

∑2M
j=−2M(2M + 1− j)|aj•|2 � M‖fX‖2

2 and M is the
maximum frequency our statistic looks at.

The quality of the normal approximation is controlled by the (small)
quantity

δ∗ := max

{
∆

1/2
f ∨ 1

M1/2
,D1/4,

(M2

n

)1/2
,
AM,XAM,Y

M

}1/3

,

where AM,X :=
∑2M

j=−2M |aj•| = o(M1/2).
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Power function

Theorem

Consider f with ‖f ‖∞ <∞, let α ∈ (0, 1) and let B ∈ N. With
s = dα(B + 1)e − 1, let BB−s,s+1 ∼ Beta(B − s, s + 1). Then there exists
C = C (‖f ‖∞, α) > 0 such that∣∣Pf (p ≤ α)− EΦ̄

(
Φ−1(BB−s,s+1)−∆f

)∣∣
≤ εn,M,B(f ) := C min{B4/3δ∗, (B

−1/3 ∨ δ1/3
∗ )}.
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Simulations

With n = 300,M = 7, α = 0.1,B = 99 and

f (x , y) = 1 + ρ sin(2πx) sin(2πy)

for ρ = 0, 0.05, 0.1, . . . , 0.5.
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Here σ2
M,X = σ2

M,Y = 2M + 1 and AM,X = AM,Y = 1.
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Conclusion

We have provided a general upper bound on the minimax separation
for independence testing by considering the power of a permutation
test.

We have given matching lower bounds, which therefore establish that
our permutation test is optimal in certain cases.

Based on new approximate normality results for U-statistics calculated
on permuted data sets we prove more detailed power results.
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Thank you!

Berrett, T. B., Kontoyiannis, I. and Samworth, R. J. (2021) Optimal rates
for independence testing via U-statistic permutation tests. Ann. Statist.,
to appear.

Berrett, T. B. and Samworth R. J. (2021) USP: an independence test that
improves on Pearson’s chi-squared and the G -test. arXiv:2101.10880
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Döbler, C. and Peccati, G. (2019) Quantitative CLTs for symmetric U-statistics. Electron. J.
Probab., 24, 1–43.

Ermakov, M. S. (1990) Asymptotically minimax tests for nonparametric hypotheses concerning
the distribution density. J. Sov. Math., 52, 2891–2898.

Fisher, R. A. (1935) The Design of Experiments (1st Ed.). Oliver and Boyd, Edinburgh.

Gretton A., Bousquet O., Smola A. and Schölkopf B. (2005) Measuring Statistical Dependence
with Hilbert-Schmidt Norms. Algorithmic Learning Theory, 63–77.

Gretton, A. and Györfi, L. (2010). Consistent nonparametric tests of independence. J. Mach.
Learn. Res., 11, 1391–423.

Kendall, M. G. (1938) A new measure of rank correlation. Biometrika, 30, 81–93.

Kim, I., Balakrishnan, S. and Wasserman, L. (2021) Minimax optimality of permutation tests.
Ann. Statist., to appear.

Kojadinovic, I. and Holmes, M. (2009) Tests of independence among continuous random vectors
based on Cramér–von Mises functionals of the empirical copula process. J. Multivariate
Anal., 100, 1137–54.

49 / 48



References

Heller, R., Heller, Y., Kaufman, S., Brill, B. and Gorfine, M. (2016) Consistent distribution-free
K -sample and independence tests for univariate random variables. J. Mach. Learn. Res., 17,
1–54.

Hall, P. (1984) Central limit theorem for integrated square error multivariate nonparametric
density estimators. J. Multivar. Anal., 14, 1–16.

Hoeffding, W. (1948) A non-parametric test of independence. Ann. Math. Statist., 19, 546–57.

Hoeffding, W. (1952) The large-sample power of tests based on permutations of observations.
Ann. Math. Statist, 23, 169–192.

Ingster, Y. I. (1989) Asymptotic minimax testing of independence hypothesis. J. Sov. Math.,
44, 466–476.

Ingster, Y. I. (1996) Minimax testing of the hypothesis of independence for ellipsoids in `p . J.
Math. Sci., 81, 2406–2420.

Lehmann, E. L. and Romano, J. P. (2005) Testing Statistical Hypotheses (3rd Ed.). Springer,
New York.

Albert, M., Laurent, B., Marrel, A. and Meynaoui, A. (2019) Adaptive test of independence
based on HSIC measures. Available at arXiv:1902.06441.

Pitman, E. J. G. (1938) Significance tests which may be applied to samples from any
populations: III. The analysis of variance test. Biometrika, 29, 322–335.

Pearson, K. (1920) Notes on the history of correlation. Biometrika, 13, 25–45.
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