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Personal data

The collection and use of personal data is increasingly common in modern

& a“

Souce: Paris Marx, medium. com

Data protection laws and bad publicity drive organisations to demonstrate
respect for individuals’' privacy.
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Sensitive information

Many classical application areas also involve large amounts of sensitive
information. For example:

@ Medicine and public health;
o Census;

@ Finance.

Opportunities for Big Data in Healthcare
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Traditional anonymisation is not enough

Removing names/addresses is insufficient to prevent re-identification.

Name

Ethnicity

Address

Visit date

Date
registered

Party
affiliation

Total charge Date last

Medical Data Voter List

Through ‘anonymised’ state medical records and publicly available voter
registration lists, Sweeney (2002) was able to find the medical records of
the governor of Massachusetts.
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Privacy mechanisms

A privacy mechanism is a randomised algorithm taking an input dataset

X =(X1,...,Xp) in X" and producing publishable data Z. Formally, it is

a collection of conditional distributions @ = {Q(:|x) : x € X'} such that
Z{X =x} ~ Q(-[x).

’ Noise p— Secure Dataset

E—

E— \

A
Raw Dataset

Source: Abhishek Tandon, medium.com

How much noise should we add? What type of noise?
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Differential privacy

Privacy mechanism @ is called a-differentially private (Dwork et al., 2006) if

Q(AX)
"X QAIX)

< e

for all x,x" such that d(x,x") :== 377 ; I, 2 < 1.
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Differential privacy

Privacy mechanism @ is called a-differentially private (Dwork et al., 2006) if

for all x,x" such that d(x,x") :== 377 ; I, 2 < 1.

Differential privacy provides a rigorous framework to control the amount of
personal information in published data. Large scale applications include

@ Google Chrome (Erlingsson, Pihur and Korolova, 2014);
@ Apple in iOS and macQOS (Tang et al., 2017);

@ Microsoft (Ding, Kulkarni and Yekhanin, 2017);

@ Uber (Near, 2018);

@ US Census (Machanavajjhala et al., 2008; Dwork, 2019).

Can also be used to demonstrate GDPR compliance (Cohen and Nissim, 2020).
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(Central) Differential privacy

The earliest work (Dwork et al., 2006) assumes a trusted data curator.

Xl X2 e Xn
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Simple hypothesis testing
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Simple hypothesis testing

Consider the simple hypothesis testing problem
H(J:P:Po VS. H1:P:P0
iid

for fixed distributions Py, Py, given Xi,..., X, ~ P.

The classical LR statistic [[7_; ZTF%(X") is difficult to privatise, but we can
use ideas from robust statistics (e.g. Chen et al., 2016; Gopi et al., 2020).

In the non-private setting the Scheffé test rejects Hp if and only if
1 < 1
n Z Lixeacy > E{PO(A) + P1(A)}
i=1

where A is such that Py(A) — P1(A) = sups{Po(S) — P1(S)}.
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Simple hypothesis testing

This can be applied to the output of the randomised response mechanism
(Warner, 1965; Gopi et al., 2020)

7 Tix,eacy; w.pr. e*/(1+ e%),
: 1 —1¢x.cac), otherwise.
Reject if and only if

oy (2 g ) > 3P+ P

i=1
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Simple hypothesis testing

This can be applied to the output of the randomised response mechanism
(Warner, 1965; Gopi et al., 2020)

7 Tix,eacy; w.pr. e*/(1+ e%),
: 1 —1¢x.cac), otherwise.
Reject if and only if

oy (2 g ) > 3P+ P

i=1

Analysing the risk of this test shows that

no = inf inf {E Ep, o(1 — < 2exp[—Cna®TV(Py, P1)?].
R, Qggmlen%{ Po,@(9)+Ep, o ¢)} exp[—Cna”TV(Po, P1)7]
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Simple hypothesis testing

This can be applied to the output of the randomised response mechanism
(Warner, 1965; Gopi et al., 2020)

7 Tix,eacy; w.pr. e*/(1+ e%),
: 1 —1¢x.cac), otherwise.
Reject if and only if

oy (2 g ) > 3P+ P

i=1

Analysing the risk of this test shows that

na = inf inf {E Ep, o(1 — @) ¢ < 2exp[—Cna®TV(Py, P1)?].
Roai=gnt, ot {50,0(0)+Er, 001~ 0)| < 26l Cra?TV(Po. 1Y)
There is a lower bound to match:

Raa > (1/2) exp[16na>TV(Po, P1)°].

10/25



Simple hypothesis testing

We combine private and robust analyses to show that, under e-Huber
contamination (X; ~ (1 — )P + £G), the minimax risk satisfies

(1/2) exp[—16na*{TV(Po, P1) — e/(1 — €)}2]
< Rnale) < 2exp[—Cna?{TV(Py, P1) — /(1 — €)}3]

For combined error rate < 0.1 we require:
o Classical model: H(Py, P1) 2 1//n;

@ c-Huber with n = oo: TV(P(), Pl) > 6/(1 - 6) (e.g. Chen et al., 2016);
@ a-LDP: TV(Py, P1) 2 1/vVna? (eg. Gopi et al., 2020);

@ a-LDP and e-Huber: TV(Py, P1) 2 € + 1/Vna? (Li et al., 2022).
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Simple hypothesis testing

We combine private and robust analyses to show that, under e-Huber
contamination (X; ~ (1 — )P + £G), the minimax risk satisfies

(1/2) exp[—16na*{TV(Po, P1) — e/(1 — €)}2]
< Rnale) < 2exp[—Cna?{TV(Py, P1) — /(1 — €)}3]

For combined error rate < 0.1 we require:
o Classical model: H(Py, P1) 2 1//n;

@ c-Huber with n = oo: TV(P(), Pl) > 6/(1 - 6) (e.g. Chen et al., 2016);
@ a-LDP: TV(Py, P1) 2 1/vVna? (eg. Gopi et al., 2020);
@ a-LDP and e-Huber: TV(Py, P1) 2 € + 1/Vna? (Li et al., 2022).

There are deep connections between robust statistics and (local)
differential privacy (e.g. Dwork and Lei, 2009; Avella-Medina, 2021; Li et al., 2022).
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Goodness-of-fit testing
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Goodness-of-fit testing

iid. . C
Raw data Xi,...,X, =~ p, a discrete distribution on N.

Want to test
Ho:p=po vs. Hi(6,L/): [lp—pollr =6

for r=1,2.
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Goodness-of-fit testing

iid. . C
Raw data Xi,...,X, =~ p, a discrete distribution on N.

Want to test
Ho:p=po vs. Hi(6,L/): [lp—pollr =6
for r=1,2.

In the non-private problem with r = 1 we may have

o [Tl
n

and still have non-trivial power (Valiant and Valiant, 2014, 2017; Balakrishnan and
Wasserman, 2019).
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Goodness-of-fit testing

iid. . C
Raw data Xi,...,X, =~ p, a discrete distribution on N.

Want to test
Ho:p=po vs. Hi(6,L/): [lp—pollr =6
for r=1,2.

In the non-private problem with r = 1 we may have

o [Tl
n

and still have non-trivial power (Valiant and Valiant, 2014, 2017; Balakrishnan and
Wasserman, 2019).

Q: How are local testing rates affected by local differential privacy?
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Interactive vs. Non-interactive

For simple hypothesis testing a non-interactive method was optimal.

X1 X5 . X,
1 1 1 1
Z 7> . Z,

—

In this problem we see that sequentially interactive methods can do better.

X1 X5 . X,

! ! ! !

Z Z ... Z,
¢
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Minimax separation rate

We measure performance through the minimax separation rate: the

smallest & for which we have non-trivial power. Given mechanism @ and
v > 0 this is

En(Q, po,L,) = inf{5 >0: inf  sup {Ep(¢)+Ep(1—09)} < fy}
PEPQ peHy (5,Ly)

We also want to find the best mechanism in our classes

ENI (PO’]L ) = IanI 8n(Qa PO’Lr)7 5,17,a(P07]IJr) = inf gn(Q) pOaLr)-
oY QReQl

Hy : |lp— pollr =6
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Non-interactive rates

Xl X2 e Xn

Zl Z2 e Zn

Optimal rate for pg = Unif([d]) in L; is \//7 (Acharya et al., 2019).

NI 3/4 NI 11/4
Enalpo, L1) S and &, (po,L2) S ——,
al ) S \/— ok ) N

with (nearly) matching lower bound for IL;. Here j, j.. are ‘effective
support sizes', e.g.

:3/4 oo
. . . . J .
Ju = ju(na?, po, 1) := mln{J €N: (no?)172 > ) po(J')}-

(na
W
J =t 16/25



Interactive rates

Going back to the interactive setting:

Xl X2 e Xn

“ wz

We have

~1/2 1
]L2) 5 T
N Vne?

with (nearly) matching lower bounds, where J is another ‘effective support
size'.

ENL (po, 1) S and & ,(po.
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Table: Separation rates (up to log factors) for testing discrete distributions on N.

Noninteractive Interactive
Po L, L, Ly L,
< d1/4
. d3/4 = no2 dt/2 1
U n |f[d] o2 > d1/4 /\ L no? /nOé2
~ v/na? Vd
23
1 __28_ < (na?)~ w1 __28_
x J 1-8 (nozz) 3B+3 —( 2) 2641 (naz) 15+2 '}2
—4R132 [0
Z (na ) 4343
x .ne_cjﬁ log®/ (*#) (na?) log!/*#) (na?) log?/ (*#) (na?) 1
J v na? vV na? vna2 na?
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Non-interactive procedure

Let (W) RS Laplace. Given B C N, with first half of data generate

Zij = Lixi=jy + — Ww jeB

and find
Sg = Z Z{ ij — }{lej (J)}

jEB 11#/2
(=)
g
o
i _
§
o

E ]
g -
o

N B
g -
o I I I I I I
0 20 40 60 80 100
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Non-interactive procedure

With second half:

Zi = lyxgpy + — W,1, Tg = Z {Zi — po(B)}.

i=n+1
o
[52)
8
o
o
N
S
o
3 ;
o
o
-
3
o
c
_ B
o
o
S
o T T T T T T
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Interactive procedure

We use Tg to deal with the tail of pg as before, but estimate

> {p() = o)} =D pU){PG) = Po(i)} = Y po(i){PU) — Po(i)}

jeB jeB jeB

differently.

Two-steps: find some p; then estimate the linear functional of p,

> P{B — poli)},

jeB

using optimal linear functional estimators of Rohde and Steinberger
(2020). See also Butucea, Rohde and Steinberger (2020).
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Interactive procedure

With first half of sample generate

Zij = Lix=j +

2
(0%

and calculate p; = 1 S°7 | Z;.

With second half, set ¢, = zzﬂ and 7 = (nozz)*l/2 and generate Z; in
{—ca " T,cq 7} with

]P)(Zi:Ca'T’Xi:J):2<1+[J c (T)] ),
"

where [v]T_ = (—7)V v A 7. Reject if Tg is large or if

2n d
Dg = % >z = poli)lB; — pol)”,
=

i=n+1

is large.
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Continuous case

Methods/results from discrete GoF testing can be extended to case of
continuous distributions with Holder smooth densities (Dubois et al., 2022).

fo Non-interactive Interactive Non-private
Ua ) ()27 (nad) Vg
N(0,1) (na?)=2/7 (na?)~1/3 n—2/5
Beta(a, b) (na?)=2/7 (na?)~1/3 n—2/5
Cauchy(0, a) (na?)—2/13 (na?)~1/5 n—2/5

Pareto(a, k) (na2)*2k/(7k+6) (na2)fk/(3k+2) n—2k/(2+3k)

Table: Examples of L, testing rates (up to log factors) for Lipschitz densities.
The non-private rates can be found in Balakrishnan and Wasserman (2019). 23/25



Conclusion

By considering simple hypothesis testing we see links between robust
statistics and LDP (also in mean/median estimation, density estimation...)

LDP constraints reduce the effective sample size and can change rates of
convergence.

With more complex problems there can be a gap between non-interactive
and sequentially interactive rates.
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Thank you!

Li, M., B. and Yu, Y. (2022+) On robustness and local differential privacy.
arXiv:2201.00751.

B. and Butucea, C. (2020) Locally private non-asymptotic testing of
discrete distributions is faster using interactive mechanisms. NeurlPS 34.

Dubois, A., B. and Butucea, C. (2022) Goodness-of-fit testing for Holder
continuous densities under local differential privacy. Foundations of
Modern Statistics — Festschrift in Honor of Vladimir Spokoiny
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