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Personal data

The collection and use of personal data is increasingly common in modern
society.

Souce: Paris Marx, medium.com

Data protection laws and bad publicity drive organisations to demonstrate
respect for individuals’ privacy.
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Sensitive information

Many classical application areas also involve large amounts of sensitive
information. For example:

Medicine and public health;

Census;

Finance.
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Traditional anonymisation is not enough

Removing names/addresses is insufficient to prevent re-identification.

L. Sweeney.k-anonymity: a model for protecting privacy.International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems,10 (5), 2002; 557-570.

Page 3

linking diagnosis, procedures, and medications to particularly named
individuals.

For example, William Weld was governor of Massachusetts at that time
and his medical records were in the GIC data. Governor Weld lived in
Cambridge Massachusetts. According to the Cambridge Voter list, six people
had his particular birth date; only three of them were men; and, he was the
only one in his 5-digit ZIP code.
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Figure 1 Linking to re-identify data

The example above provides a demonstration of re-identification by directly
linking (or “matching”) on shared attributes. The work presented in this paper
shows that altering the released information to map to many possible people,
thereby making the linking ambiguous, can thwart this kind of attack. The greater
the number of candidates provided, the more ambiguous the linking, and therefore,
the more anonymous the data.

2. Background

The problem of releasing a version of privately held data so that the individuals
who are the subjects of the data cannot be identified is not a new problem. There
are existing works in the statistics community on statistical databases and in the
computer security community on multi-level databases to consider. However,
none of these works provide solutions to the broader problems experienced in
today’s data rich setting.

2.1. Statistical databases

Federal and state statistics offices around the world have traditionally been
entrusted with the release of statistical information about all aspects of the
populace [5]. But like other data holders, statistics offices are also facing
tremendous demand for person-specific data for applications such as data mining,

Through ‘anonymised’ state medical records and publicly available voter
registration lists, Sweeney (2002) was able to find the medical records of
the governor of Massachusetts.
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Privacy mechanisms

A privacy mechanism is a randomised algorithm taking an input dataset
X = (X1, . . . ,Xn) in X n and producing publishable data Z. Formally, it is
a collection of conditional distributions Q = {Q(·|x) : x ∈ X} such that

Z|{X = x} ∼ Q(·|x).

Source: Abhishek Tandon, medium.com

How much noise should we add? What type of noise?
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Differential privacy

Privacy mechanism Q is called α-differentially private (Dwork et al., 2006) if

sup
A

Q(A|x)

Q(A|x′)
≤ eα

for all x, x′ such that d(x, x′) :=
∑n

i=1 1xi 6=x ′i
≤ 1.

Differential privacy provides a rigorous framework to control the amount of
personal information in published data. Large scale applications include

Google Chrome (Erlingsson, Pihur and Korolova, 2014);

Apple in iOS and macOS (Tang et al., 2017);

Microsoft (Ding, Kulkarni and Yekhanin, 2017);

Uber (Near, 2018);

US Census (Machanavajjhala et al., 2008; Dwork, 2019).

Can also be used to demonstrate GDPR compliance (Cohen and Nissim, 2020).
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(Central) Differential privacy

The earliest work (Dwork et al., 2006) assumes a trusted data curator.

X1 X2 · · · Xn

θ̂

Z

We consider the local model (e.g. Duchi et al., 2013):

X1 X2 · · · Xn

Z1 Z2 · · · Zn

θ̂n
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Simple hypothesis testing
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Simple hypothesis testing

Consider the simple hypothesis testing problem

H0 : P = P0 vs. H1 : P = P0

for fixed distributions P0,P1, given X1, . . . ,Xn
iid∼ P.

The classical LR statistic
∏n

i=1
dP1
dP0

(Xi ) is difficult to privatise, but we can
use ideas from robust statistics (e.g. Chen et al., 2016; Gopi et al., 2020).

In the non-private setting the Scheffé test rejects H0 if and only if

1

n

n∑
i=1

1{Xi∈Ac} >
1

2
{P0(A) + P1(A)},

where A is such that P0(A)− P1(A) = supS{P0(S)− P1(S)}.

9 / 25



Simple hypothesis testing

This can be applied to the output of the randomised response mechanism
(Warner, 1965; Gopi et al., 2020)

Zi =

{
1{Xi∈Ac}, w.pr. eα/(1 + eα),

1− 1{Xi∈Ac}, otherwise.

Reject if and only if

eα + 1

n(eα − 1)

n∑
i=1

(
Zi −

1

eα + 1

)
>

1

2
{P0(A) + P1(A)}.

Analysing the risk of this test shows that

Rn,α := inf
Q∈Qα

inf
φ∈ΦQ

{
EP0,Q(φ)+EP1,Q(1− φ)

}
≤ 2 exp[−Cnα2TV(P0,P1)2].

There is a lower bound to match:

Rn,α ≥ (1/2) exp[−16nα2TV(P0,P1)2].
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Simple hypothesis testing

We combine private and robust analyses to show that, under ε-Huber
contamination (Xi ∼ (1− ε)P + εG ), the minimax risk satisfies

(1/2) exp[−16nα2{TV(P0,P1)− ε/(1− ε)}2
+]

≤ Rn,α(ε) ≤ 2 exp[−Cnα2{TV(P0,P1)− ε/(1− ε)}2
+]

For combined error rate ≤ 0.1 we require:

Classical model: H(P0,P1) & 1/
√
n;

ε-Huber with n =∞: TV(P0,P1) > ε/(1− ε) (e.g. Chen et al., 2016);

α-LDP: TV(P0,P1) & 1/
√
nα2 (e.g. Gopi et al., 2020);

α-LDP and ε-Huber: TV(P0,P1) & ε+ 1/
√
nα2 (Li et al., 2022).

There are deep connections between robust statistics and (local)
differential privacy (e.g. Dwork and Lei, 2009; Avella-Medina, 2021; Li et al., 2022).
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Goodness-of-fit testing
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Goodness-of-fit testing

Raw data X1, . . . ,Xn
i.i.d.∼ p, a discrete distribution on N.

Want to test

H0 : p = p0 vs. H1(δ,Lr ) : ‖p − p0‖r ≥ δ

for r = 1, 2.

In the non-private problem with r = 1 we may have

δ ≈
√
‖p0‖2/3

n

and still have non-trivial power (Valiant and Valiant, 2014, 2017; Balakrishnan and

Wasserman, 2019).

Q: How are local testing rates affected by local differential privacy?
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Interactive vs. Non-interactive

For simple hypothesis testing a non-interactive method was optimal.

X1 X2 · · · Xn

Z1 Z2 · · · Zn

φ

In this problem we see that sequentially interactive methods can do better.

X1 X2 · · · Xn

Z1 Z2 · · · Zn

φ
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Minimax separation rate

We measure performance through the minimax separation rate: the
smallest δ for which we have non-trivial power. Given mechanism Q and
γ > 0 this is

En(Q, p0,Lr ) = inf

{
δ > 0 : inf

φ∈ΦQ

sup
p∈H1(δ,Lr )

{
Ep0(φ) + Ep(1− φ)

}
≤ γ

}
We also want to find the best mechanism in our classes

ENI
n,α(p0,Lr ) = inf

Q∈QNI
α

En(Q, p0,Lr ), E In,α(p0,Lr ) = inf
Q∈QI

α

En(Q, p0,Lr ).

H0 : p = p0

H1 : ‖p − p0‖r ≥ δ

δ
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Non-interactive rates

X1 X2 · · · Xn

Z1 Z2 · · · Zn

Optimal rate for p0 = Unif([d ]) in L1 is d3/4
√
nα2

(Acharya et al., 2019).

Theorem (B. and Butucea (2020))

ENI
n,α(p0,L1) .

j
3/4
∗√
nα2

and ENI
n,α(p0,L2) .

j
1/4
∗∗√
nα2

,

with (nearly) matching lower bound for L1. Here j∗, j∗∗ are ‘effective
support sizes’, e.g.

j∗ = j∗(nα
2, p0,L1) := min

{
j ∈ N :

j3/4

(nα2)1/2
≥

∞∑
j ′=j+1

p0(j ′)

}
.
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Interactive rates

Going back to the interactive setting:

X1 X2 · · · Xn

Z1 Z2 · · · Zn

Theorem

We have

ENI
n,α(p0,L1) .

j̃1/2

√
nα2

and E In,α(p0,L2) .
1√
nα2

,

with (nearly) matching lower bounds, where j̃ is another ‘effective support
size’.
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Examples

Table: Separation rates (up to log factors) for testing discrete distributions on N.

Noninteractive Interactive

p0 L1 L2 L1 L2

Unif[d ] d3/4
√
nα2

≤ d1/4
√
nα2

& d1/4
√
nα2
∧ 1√

d

d1/2
√
nα2

1√
nα2

∝ j−1−β (nα2)−
2β

4β+3
≤ (nα2)−

2β
4β+1

& (nα2)−
2β+1
4β+3

(nα2)−
2β

4β+2 1√
nα2

∝ jηe−cj
β log3/(4β)(nα2)√

nα2

log1/(4β)(nα2)√
nα2

log2/(4β)(nα2)√
nα2

1√
nα2
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Non-interactive procedure

Let (Wij)
i.i.d.∼ Laplace. Given B ⊂ N, with first half of data generate

Zij = 1{Xi=j} +
2

α
Wij , j ∈ B

and find

SB =
∑
j∈B

1

n(n − 1)

∑
i1 6=i2

{Zi1j − p0(j)}{Zi2j − p0(j)}.

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0
0.

03
0

j

p 0
(j)

B
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Non-interactive procedure

With second half:

Zi = 1{Xi 6∈B} +
2

α
Wi1, TB =

1

n

2n∑
i=n+1

{Zi − p0(Bc)}.

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0
0.

03
0

j

p 0
(j)

Bc

Reject if max(SB ,TB) is large to show ENI
n,α(p0,L1) . |B|3/4

√
nα2
∨ p0(Bc).
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Interactive procedure

We use TB to deal with the tail of p0 as before, but estimate∑
j∈B
{p(j)− p0(j)}2 =

∑
j∈B

p(j){p(j)− p0(j)} −
∑
j∈B

p0(j){p(j)− p0(j)}

differently.

Two-steps: find some p̂j then estimate the linear functional of p,∑
j∈B

p(j){p̂j − p0(j)},

using optimal linear functional estimators of Rohde and Steinberger
(2020). See also Butucea, Rohde and Steinberger (2020).
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Interactive procedure

With first half of sample generate

Zij = 1{Xi=j} +
2

α
Wij , j ∈ B

and calculate p̂j = 1
n

∑n
i=1 Zij .

With second half, set cα = eα+1
eα−1 and τ = (nα2)−1/2 and generate Zi in

{−cα · τ, cα · τ} with

P(Zi = cα · τ |Xi = j) =
1

2

(
1 +

[p̂j − p0(j)]τ−τ
cα · τ

)
,

where [v ]τ−τ = (−τ) ∨ v ∧ τ . Reject if TB is large or if

DB =
1

n

2n∑
i=n+1

Zi −
d∑

j=1

p0(j)[p̂j − p0(j)]τ−τ

is large.
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Continuous case

Methods/results from discrete GoF testing can be extended to case of
continuous distributions with Hölder smooth densities (Dubois et al., 2022).

f0 Non-interactive Interactive Non-private

U([a, b]) (nα2)−2/7 (nα2)−1/3 n−2/5

N (0, 1) (nα2)−2/7 (nα2)−1/3 n−2/5

Beta(a, b) (nα2)−2/7 (nα2)−1/3 n−2/5

Cauchy(0, a) (nα2)−2/13 (nα2)−1/5 n−2/5

Pareto(a, k) (nα2)−2k/(7k+6) (nα2)−k/(3k+2) n−2k/(2+3k)

Table: Examples of L1 testing rates (up to log factors) for Lipschitz densities.
The non-private rates can be found in Balakrishnan and Wasserman (2019). 23 / 25



Conclusion

By considering simple hypothesis testing we see links between robust
statistics and LDP (also in mean/median estimation, density estimation...)

LDP constraints reduce the effective sample size and can change rates of
convergence.

With more complex problems there can be a gap between non-interactive
and sequentially interactive rates.
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Thank you!

Li, M., B. and Yu, Y. (2022+) On robustness and local differential privacy.
arXiv:2201.00751.

B. and Butucea, C. (2020) Locally private non-asymptotic testing of
discrete distributions is faster using interactive mechanisms. NeurIPS 34.

Dubois, A., B. and Butucea, C. (2022) Goodness-of-fit testing for Hölder
continuous densities under local differential privacy. Foundations of
Modern Statistics – Festschrift in Honor of Vladimir Spokoiny
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densities under local differential privacy. Foundations of Modern Statistics –
Festschrift in Honor of Vladimir Spokoiny

Dwork, C., McSherry, F., Nissim, K. and Smith, A. (2006) Calibrating noise to
sensitivity in private data analysis. Theory of Cryptography, 265–284.

Dwork, C. and Lei, J. (2009) Differential privacy and robust statistics. Annual
ACM Symposium on Theory of Computing, 371–380.

Dwork, C. (2019) Differential privacy and the US census. PODS.

Erlingsson, U., Pihur, V. and Korolova, A. (2014) Rappor: Randomized
aggregatable privacy-preserving ordinal response. Proc. 2014 ACM SIGSAC
conference on computer and communications security, 1054–1067.

Gopi, S., Kamath, G., Kulkarni, J., Nikolov, A., Wu, Z. S. and Zhang, H. (2020)
Locally private hypothesis selection. Conference on Learning Theory,
1785–1816.

Li, M., B. and Yu, Y. (2022) On robustness and local differential privacy.
Available at arXiv:2201.00751.

27 / 25



References

Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J. and Vilhuber, L. (2008)
Privacy: Theory meets practice on the map. IEEE 24th international
conference on data engineering, 277–286.

Near, J. (2018) Differential privacy at scale: Uber and Berkeley collaboration.
Enigma 2018.

Rohde, A. and Steinberger, L. (2020) Geometrizing rates of convergence under
local differential privacy constraints. Ann. Statist., 48, 2646–2670.

Sweeney, L. (2002) k-anonymity: A model for protecting privacy. Fuzziness and
Knowledge-Based Systems, 10, 557–570.

Tang J., Korolova, A., Bai, X., Wang, X. and Wang X. (2017) Privacy loss in
Apple’s implementation of differential privacy on macOS 10.12. Available at
arXiv:1709.02753.

Valiant, G. and Valiant, P. (2014) An automatic inequality prover and instance
optimal identity testing. FOCS 2014.

Valiant, G. and Valiant, P. (2017) An automatic inequality prover and instance
optimal identity testing. SIAM Journal on Computing, 46, 429–455.

Warner, S. L. (1965) Randomized sesponse: A survey technique for eliminating
evasive answer bias. J. Amer. Statist. Assoc., 60, 63–69.

28 / 25


	Appendix
	References
	References
	References


