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One of the most common gaps between theory and practice is missing
data.

With incomplete data traditional methodology often becomes inapplicable,
uninterpretable or unreliable.

The best solution to handle missing data is to have none.

— R.A. Fisher

Nevertheless, recent work has introduced methodology and theory for
modern statistical problems (Loh & Wainwright, 2012; Loh & Tan, 2018; Zhu, Wang &
Samworth, 2019; Elsener & van de Geer, 2019; Cai & Zhang, 2019; Follain, Wang & Samworth,
2022).



Missingness mechanisms

When data is missing, some quantities are fundamentally out of reach. We
must make assumptions about the mechanisms causing the missingness.
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The simplest setting is where data are MCAR, and when this holds the
analysis is much easier and more interpretable.



Formal setting

Variables of interest X taking values in X = dezl X; and € taking values
in {0,1}? indicating which variables are observed. Writing

xj ifwj=1
Xow); = . ,
( )i {* if wj=0

we observe i.i.d. copies of the random vector X o Q2. MCAR says that

X 1 Q.

Here we aim to test Hy : X 1L €.



Observables

Write S = {S C [d] : P(2 = 1s) > 0} for the set of possible observation
patterns.
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Little & Rubin (2019)

Write Ps for the distribution of Xs|{Q = 15} for S € S and write
Ps = (Ps : S € S). These are the distributions we have access to.



Little's test

If data is Gaussian and all pairs of variables are observed together, the EM
algorithm can be used to find MLEs for the population mean and
covariance matrix.

Little (1988) estimates means and covariances within each observation
pattern and compares to null MLEs with LR test.

J
d* = Z mj(yobs,j - liobs.j)z&ls.j(yobs,j - liobs.j)T-

j=1



Fuchs's test

When X is discrete and complete cases are available ([d] € S), the EM
algorithm can be used to find the MLE for the population distribution.

Fuchs (1982) derives the LR test statistic comparing this to observed
distributions. With a large number of complete cases this has an
approximate 2 distribution.
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Nonparametric tests of MCAR

In nonparametric settings, many works have proposed tests based on two
sample testing methodology (Li & Yu, 2015; Michel, Spohn & Meinshausen, 2021).

We can rule out Hy if there are two observation patterns 51,5, € S for
which Ps, and Ps, have different marginal distributions on Xs s, .

We say that Pg is consistent if ngms? = P_%OS? whenever 51,5, € S have
S5NS5 # Q.
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Consistency is not sufficient

It is straightforward to see that there exist non-MCAR settings where all
such tests would have trivial power.
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Our aims

We would like to introduce methods that:

@ Do not rely on parametric assumptions;

@ Can be used for any S, without a need for complete cases (or, e.g.
data on each pair of variables);

@ Have power against all detectable alternatives.
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© Fréchet classes and compatibility



Fréchet classes

Define the Fréchet class
F(Ps) := {P on X : P has marginal distribution Ps on Xs},

where Xs = [];.s Aj. Say Ps is compatible if F(Ps) # 0.

'More generally, compatibility is equivalent to consistency if S is decomposable
(Lauritzen & Spiegelhalter, 1988)



Fréchet classes

Define the Fréchet class
F(Ps) := {P on X : P has marginal distribution Ps on Xs},

where Xs = [[;cs &j. Say Ps is compatible if 7(Ps) # 0.

o IfS= {{1}, .. ,{d}} then .F(PS) # () for any Ps = (P{1}7 ce P{d})

o If [d] = {1,...,d} €S then either F(Ps) = {Pjq} or F(Ps) = 0.
Here compatibility is equivalent to consistency®.

o If S={{1,2},{2,3},{1,3}} consistency is not sufficient for
compatibility, as per earlier Gaussian example.

'More generally, compatibility is equivalent to consistency if S is decomposable
(Lauritzen & Spiegelhalter, 1988)



Compatibility

If Ho holds then Xs|{Q = 1} < Xs, so £(X) € F(Ps) and F(Ps) # 0.



Compatibility

If Ho holds then Xs|{Q = 1} < Xs, so £(X) € F(Ps) and F(Ps) # 0.

On the other hand, if F(Ps) # 0, then there exists P such that, if X ~ P
is independent of (X, ), then

)N(oQiXoQ.

But the distribution of (X, Q) satisfies Hp.



Compatibility

Ho = F(Ps)#0 and F(Ps)# 0 = cannot rule out Hp.

Ps incompatible

. ? i
Ps compatible Detectable(?) alternatives

Undetectable alternatives

The best we can do is test the compatibility of Ps.



Testing compatibility

We slightly change our model. For fixed S C 219, distributions

(Ps : S €8) with Ps on Xs, and deterministic sample sizes (ns : S € S)
we observe

Xs1,-->Xs.ng - Ps VS €S, independently.

With this data we aim to test

Hb - F(Ps) # 0.



Testing compatibility

We slightly change our model. For fixed S C 219, distributions

(Ps : S €8) with Ps on Xs, and deterministic sample sizes (ns : S € S)
we observe

Xs1,-->Xs.ng - Ps VS €S, independently.

With this data we aim to test

Hb - F(Ps) # 0.

In fact, tests of compatibility are needed in other areas beyond missing
data.



Quantum contextuality

‘...measurements of quantum observables cannot simply be thought of as
revealing pre-existing values’' (Wikipedia). See Bell (1966).

M. C. Escher (Cunha, 2019)

Local measurements Ps may not glue together for a sensible global picture.



Other relevant areas

Expert systems (Lauritzen & Spiegelhalter, 1988).

@ Meta analysis (Massa & Lauritzen, 2010).

o Relational database theory (Abramsky, 2013).

Quantitative risk management (Puccetti & Riischendorf, 2012).



Incompatibility index

To formalise the problem we define an incompatibility index R(-) so that
we test
Hy: R(Ps)=0 wvs. Hi(p): R(Ps)>p

L H()R(Ps) 2 p
Hy: Ps €

0
s
S He X Q
. MCAR



Incompatibility index

Let Gs be the set of sequences (fs : S € S), where fs : Xs — [—1,00) is
upper semi-continuous. Take

gg = {fgegg inf Zfs X5)>O}
SGS
We may then define

R(Ps) := sup R(Ps,fs), where R(Ps,fs) = i Z/ fs(xs) dPs(xs).
f€s Ses’Xs

Using Kellerer (1984) we have? R(Ps) = 0 if and only if Ps € PY.

2Farkas: Ip > 0st. Ap=ps <= pdfs>0Vhist. AT£>0



Dual form of R(-)

When each X is a locally compact Hausdorff space such that every open
set in X is o-compact, we have

R(Ps) = inf{e € [0,1]: Ps € (1 — €)P + €Ps}.

Clearly R(Ps) € [0,1]. When X is discrete R(Ps) < 1 if and only if there
exists x € X with Ps({xs}) > 0 for all S € S.



© Testing compatibility
@ Simple universal discrete test
@ More powerful tests



A simple test for discrete X

R(Ps) can be computed by linear programming and, writing Ps for the
empirical distributions, we can take the test statistic R := R(Ps).

The challenge is to find a critical value: general bounds give
Prs(R > Co) < o when

Co = ;Z(W)lp + {; Iog(l/a)z 1}1/2.

n n
ses s Ses '®
When X is fixed and ming ng — 0o, we have asymptotic power 1 against

all fixed alternatives. In fact, whenever R(Ps) > C, + Cs we have

P(R>C,)>1-5.



Compatibility and detectability

Ps incompatible
Detectable alternatives

Ps compatible

Undetectable alternatives



Improved tests

In choosing the critical value C, we used the bound

sup R(Ps,s) < sup  R(Ps,f),
fegt —1<h<is-1

which is generally loose as it ignore the constraints

. T — . > .
min(A " fs)x Q;I)r}szegfs(xs) >0

Although generally very complicated, we can do better with more
understanding of R(-).



Testing membership of a convex polytope

The null space 73§ is the convex hull of the columns of A, an X5 x X
matrix with

A(vas)ﬂy = ]]_{XSZyS} :

In fact, Pg is a full-dimensional subset of Pg°"®, the set of consistent
sequences.

00

Optimal testing over convex polyhedra depends on the specific geometry
(Blanchard, Carpentier & Gutzeit, 2018; Wei, Wainwright & Guntuboyina, 2019).



A decomposition

Let F e No and £V, £F) € G be such that

R(Ps) = max R(Ps, £9)  for Py € PE™.

Proposition

For Ps € Ps we have

R(P<) = R(P f(z) d P51052 P51052 )
(Ps) 3 (Ps, fg )+s?s?e(s v (Ps2, P3i™2)




A decomposition

Let F e No and £V, £F) € G be such that

R(Ps) = max R(Ps, £9)  for Py € PE™.

Proposition

For Ps € Ps we have

R(P<) = R(P f-(f) d P51052 P51052 )
(Ps) 3 (Ps, fg )-I-SPS%S v (Ps2, P3i™2)

If F is known we can choose a critical value

log(F/a X
o g B F) L s
mins ng 51,5€8:51NS:#0 ns; N ns,



@ Examples

ed=3
@ Reductions
oed=14

@ Continuous data



d = 3 example

Let S = {{1,2},{2,3},{1,3}} and X = [r] x [s] x [2] for r,s > 2. Then
for Ps € P we have

R(Ps) =2, _max {Puay(AxB)+Prus(Ax{1})~Pasy(BS < (1))}

In particular, we may take F = (2" — 2)(2° — 2) and design a test with

separation rate
/ / /
o)+ ) )™




|dea of proof

Lower bound via primal problem R(Ps) > maxac(,,8c[s] R(Ps; fSA’B).



|dea of proof

Lower bound via primal problem R(Ps) > maxac(,,8c[s] R(Ps; fSA’B).

Upper bound via dual problem

r S
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Lower bound for this example

In the previous setting, when ngy 2y > (r + s)log(r +s), ngy 3y > rlogr
and ng 3y > slogs we have a minimax lower bound of the order

/ / /
(n{172}1c;;(sr + s))1 2 * (n{173}r|og r)l 2 + (m)l 2

Up to log factors, our test is rate optimal.



Lower bound for this example

In the previous setting, when ngy 2y > (r + s)log(r +s), ngy 3y > rlogr
and ng 3y > slogs we have a minimax lower bound of the order

/ / /
(n{172}r|c;;(sr + s))1 2 * (n{173}r|og r)l 2 + (m)l 2

Up to log factors, our test is rate optimal.

When s =2 and Ps € PS™ with pe1e = Pee1 = 1/2, pep1 > 1/4 and with
Pies = 1/r, pie1 = 1/(2r) for i € [r], we have

r

R(Ps) = <Z

i=1

2r

1
Pile — ‘ + 2pe21 — 1)
+

This testing problem is then at least as hard as estimating L; distances,
and we can adapt Cai & Low (2011); Jiao, Han & Weissman (2018).



Testing against consistent alternatives

The constructions in previous lower bound satisfied Ps € Pg°".

Testing against
Hy(p) : R(Ps) = p, Ps € Pg™™
is as hard as the original problem (Hi(p) : R(Ps) > p).




For other (S, X'), analytic expressions for R(Ps) can be difficult, but we
can sometimes reduce to simpler problems.



For other (S, X'), analytic expressions for R(Ps) can be difficult, but we
can sometimes reduce to simpler problems.

If there exists J C [d] and Sp € S with J C Sp and JN'S = () for all
Se S\ {50}, then
R(Ps) = R(Pg”).

S ={{1,2,4},{2,3},{1,3,5}} reduces to S = {{1,2},{2,3},{1,3}}.

. S




If there exists J C [d] such that J C S and P{ = P’ for all S € S, then

R(Ps) = > R(Psix,—x)P’ (x)-

XJEX,

When S = {{1,2,3},{1,3,4},{1,2,4} } with X = [r] x [s] x [t] x [2] then
when Ps € Ps°™ we have

r

R(Ps) =2 —PFiABe iAe i® — Fiee .
(Ps) ;AQ[E??BXQ[L“]( PiABe + PiAel + PieB1 — Pieel)+



Reductions

If S1,S2 C S are such that there exists J € S with S; NS, = {J} and
(Uses, S) N (Uses,S) = J, then

maX{R(PSl)v R('Dsz)} < R(PS) < R(P§1) + R(sz)'

le o2

4e@ o3




Irreducible d = 4 examples

lo———e2 lo———e2 lo———e2
j0——— 03 i ————— @3 10— @3
(a) Chain pairs (b) All pairs except one (c) All pairs

(d) Single triple (e) All triples



Mixed discrete and continuous cases

By binning continuous variables we can apply our tests designed for the
discrete setting.

In particular, when X' = [0, 1]? x {1,2} and the densities on X; are
(rj, L)-Holder smooth (j = 1,2), we have a test with power whenever

ri/A\rp

R(Ps) > CS7LI‘I_ 1+2(nAr)




© Monte Carlo method and numerical results



Numerical results

Tests so far have had uniform, finite-sample Type | error control, but can
be conservative. We propose a simple Monte Carlo test that can perform
well in practice.

When X is discrete we can solve the dual linear program for R(Ps) to find
a decomposition

Ps = {1 — R(Ps)}Qs + R(Ps) Ts € {1 — R(Ps)}P2 + R(Ps)Ps.

Here Qg can be thought of as a closest compatible sequence of marginal
distributions to Ps. We can generate bootstrap samples C:)él), cee C:)éB)
and reject Hy if and only if

B

1+ bE_:l ro<riaen < @B+ 1)



Numerical results

We compare with Fuchs's LR test. With S = {{1,2},{2,3},{1,3}}, with
X = [r] x [2]% for r € {2,4,6} and with Ps € P°" defined by
1 1 1+ (-1)

Piee = ;,p.1. = Peel = §>Pi01 = E7Piol = or

and pa21 € [0.25,0.375], we take ng = (200,200, 200), B = 99, o = 0.05.

Fuchs’s test requires complete cases, so we allow it access to 200
observations from a distribution on X.

1 1
0.8 0.8
5 5 0.6 5 0.6
2 2 2
o o o
a o 0.4 o 0.4
0.2 0.2
0 oeeeee 0 JoSsscece™
T T T T T T T T T T T T T T T T T T
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25

R(Ps) R(Ps) R(Ps)



Numerical results

Now take d =5, X = [2]° and
S = {{1727374}7{1727375}7{1727475}7 {1737475}7 {2737475}}-

For e € [0.2,0.35] and i,/, k, ¢, m € [2], we set

1+ 6(_1)i+j+k+£

Pijkte = Pijket = Pijekt = Piejkt = 16 )
1— 6(_1)i+j+k+€
Peijke = 16 3

for which R(Pg) = (5¢ — 1) /4.



Numerical results

Allowing Fuchs's test {25,50, 100,200} complete cases

1

Power

0 0.05 0.1 0.15



Conclusion

Shown testing MCAR is equivalent to testing compatibility;

@ General test with asymptotic power against fixed alternatives for
discrete/discretisable data;

@ Improved tests given knowledge of underlying geometry (rate-optimal
in cases);
@ Monte Carlo method with good empirical power.



THANK YOU!

Berrett, T. B. & Samworth, R. J. (2022) Optimal nonparametric testing of
Missing Completely At Random, and its connections to compatibility
arXiv:2205.08627.
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